有这样一个采集系统的需求,达成指标: 需要采集30万关键词的数据 、微博必须在一个小时采集到、覆盖四大微博(新浪微博、腾讯微博、网易微博、搜狐微博)。为了节约客户成本,硬件为普通服务器:E5200 双核 2.5G cpu, 4 G DDR3 1333内存,硬盘 500G SATA 7200转硬盘。数据库为mysql。在这样的条件下我们能否实现这个系统目标?当然如果有更好的硬件不是这个文章阐述的内容。现通过采集、存储来说明一下如何实现:
一、采集,目标是在一个小时内把30万关键词对应的数据从四大微博采集下来,能够使用的机器配置就是上面配置的普通服务器。采集服务器对硬盘没有太多要求,属于cpu密集型运算,需耗费一些内存。评估下来硬件资源不是瓶颈,看下获取数据的接口有什么问题?
1、通过各大微博的搜索api。就比如新浪微博API针对一个服务器IP的请求次数,普通权限限制是一个小时1w次,最高权限合作授权一个小时4w次。使用应用时还需要有足够的用户,单用户每个应用每小时访问1000次,最高权限4w次需要40个用户使用你的应用。达到30w关键词,至少需要8个应用,如果每个关键词需要访问3页,总共需要24个合作权限的应用。实际操作我们是不可能为这个项目做到开发24个合作权限的应用,所以这个方式不是很合适。新浪微博API限制参考链接。
2、通过各大微博的最新微博收集数据,微博刚推出的时候,各大微博都有微博广场,可以把最新的微博都收集下来,然后通过分词,如果出现了30万关键词中的一个就留下,其他就丢弃掉。不过现在除了腾讯微博和搜狐微博有微博广场类似的功能,新浪微博和网易微博已经没有这项功能了。另按照新浪微博之前公布的数据,注册用户已经超过5亿,每小时超过1亿条微博,如果全量采集对数据存储是个大的考验,也需要大量的系统资源,实际采集了一亿条,也许就1000w条有用,浪费了9000w条数据的资源。
3、通过各大微博的网页搜索,可见即可抓的方式,结合反监控系统模块模拟人的正常行为操作,搜索30万关键词数据,使资源最大化利用。为了保证在一个小时采集到,需要采用分布式多线程模式抓取,并发采集。并发的时候不能从同一个ip或者同一个ip网段出去,保证对方不会监测到我们的爬虫。
我们最后采用了第三种方式,目前运行状况为通过30w关键词搜索得到的所有微博加在一起总量1000多w条每天,新浪和腾讯最多,新浪微博略胜一筹。使用了6台普通PC服务器,就算一台机器7000元,总共4万元硬件设备解决采集硬件问题。整体部署图为:
二、存储,采集下来的数据如何处理?首先存储采集数据是个密集写的操作,普通硬盘是否能够支持,mysql数据库软件能否支持,未来量突然增加如何应对?再就是评估存储空间,每天增量这么多需要耗费大量的存储资源,如何存放并且易扩展。
1、如何存储。正常来说我们上面配置的服务器,mysql使用myisam引擎一张表最多20w,使用innodb引擎最多400w,如果超过这个数量,查询更新速度奇慢。这里我们采用一个比较取巧的做法,使用mysql的innodb存储引擎做了一层缓存库,这个缓存库有两个缓存表,每个表只存储少于300w的数据,有一张表多于300w的数据就切换到另一张表插入直到超过300w再切换回去。切换成功后,把多于300w数据的表truncate掉,记得一定要没有数据插入的时候再truncate,防止数据丢失。这里一定要用truncate,不能使用delete,因为delete需要查询,要用到索引读写,并且delete还会写数据库log耗费磁盘IO,存储空间也没有释放。truncate和drop是操作数据库删除数据比较好的做法。由于有两个表作为数据插入表,使用数据库表的自增id并不太合适,需要一个高速的唯一自增Id服务器提供生成分布式ID。另数据库完全可以关闭写事务日志 ,提高性能,因为抓取的数据当时丢失再启动抓取就可以了, 这样数据库可以保持在一个比较高性能的情况完成插入操作。抓取缓存表结果如图:
2、存储空间。插入后的数据需要保存下来,不能在超过300w后被truncate掉了。我们需要有个程序在达到300万时被truncate掉之前把数据同步走,存放到另外一个库上(我们叫做结果库,结果库也是使用innodb引擎)。不过我们每天采集的数据1000多万,按天递增,mysql一张表一天就撑爆了,我们这个表不是写操作密集型,所以结果库可以存储多点数据,设定上限500w,但是500万还是存不下1000万数据。我们需要对mysql最终结果分库分表。将数据先按照时间分机器分库,再按照数据源分表,比如201301通过hash计算的数据存放在一个机器,201302通过hash计算在另一个机器。到了机器后再按照天或者半天分表,比如表名为 weibo_2013020101 、weibo_2013020112。weibo_2013020101表示2月1日上午一个表,weibo_2013020112表示2月1日下午一个表。光这样分了还是不够,1000w/2=500w,经不起压力扩展。我们还需要把表再拆分,比如weibo_2013020101 拆成 weibo_2013020101_1(新浪微博)、weibo_2013020101_2(腾讯微博)、weibo_2013020101_3(网易微博)、weibo_2013020101_4(搜狐微博)。这样一张表平均就存放 500w/4 = 125w 条数据,远远小于500w上限,还可以应对未来突发的增长。再从存储空间来算,就算一条微博数据为1k,一天 1000w*1k=10G,硬盘500G最多存放50天的数据,所以我们规划机器的时候可以挂接多一点硬盘,或者增加机器。结果库分表如图:
按照这样的架构,我们使用开源免费软件、低成本服务器搭建的千万级数据采集系统在生产运转良好。