1--VQVAE模型
VAE 模型生成的内容质量不高,原因可能在于将图片编码成连续变量(映射为标准分布),然而将图片编码成离散变量可能会更好(因为现实生活中习惯用离散变量来形容事物,例如人的高矮胖瘦等都是离散的;)
VQVAE模型的三个关键模块:Encoder、Decoder 和 Codebook;
Encoder 将输入编码成特征向量,计算特征向量与 Codebook 中 Embedding 向量的相似性(L2距离),取最相似的 Embedding 向量作为特征向量的替代,并输入到 Decoder 中进行重构输入;
VQVAE的损失函数包括源图片和重构图片的重构损失,以及 Codebook 中量化过程的量化损失 vq_loss;
VQ-VAE详细介绍参考:轻松理解 VQ-VAE
2--简单代码实例
import torch
import torch.nn as nn
import torch.nn.functional as F
class VectorQuantizer(nn.Module):
def __init__(self, num_embeddings, embedding_dim, commitment_cost):
super(VectorQuantizer, self).__init__()
self._embedding_dim = embedding_dim
self._num_embeddings = num_embeddings
self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)
self._embedding.weight.data.uniform_(-1/self._num_embeddings, 1/self._num_embeddings)
self._commitment_cost = commitment_cost
def forward(self, inputs):
# convert inputs from BCHW -> BHWC
inputs = inputs.permute(0, 2, 3, 1).contiguous()
input_shape = inputs.shape
# Flatten input
flat_input = inputs.view(-1, self._embedding_dim)
# Calculate distances
distances = (torch.sum(flat_input**2, dim=1, keepdim=True)
+ torch.sum(self._embedding.weight**2, dim=1)
- 2 * torch.matmul(flat_input, self._embedding.weight.t()))
# Encoding
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1)
encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)
encodings.scatter_(1, encoding_indices, 1)
# Quantize and unflatten
quantized = torch.matmul(encodings, self._embedding.weight).view(input_shape)
# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs) # 论文中损失函数的第三项
q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项
loss = q_latent_loss + self._commitment_cost * e_latent_loss
quantized = inputs + (quantized - inputs).detach() # 梯度复制
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
# convert quantized from BHWC -> BCHW
return loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodings
class VectorQuantizerEMA(nn.Module):
def __init__(self, num_embeddings, embedding_dim, commitment_cost, decay, epsilon=1e-5):
super(VectorQuantizerEMA, self).__init__()
self._embedding_dim = embedding_dim
self._num_embeddings = num_embeddings
self._embedding = nn.Embedding(self._num_embeddings, self._embedding_dim)
self._embedding.weight.data.normal_()
self._commitment_cost = commitment_cost
self.register_buffer('_ema_cluster_size', torch.zeros(num_embeddings))
self._ema_w = nn.Parameter(torch.Tensor(num_embeddings, self._embedding_dim))
self._ema_w.data.normal_()
self._decay = decay
self._epsilon = epsilon
def forward(self, inputs):
# convert inputs from BCHW -> BHWC
inputs = inputs.permute(0, 2, 3, 1).contiguous()
input_shape = inputs.shape # B(256) H(8) W(8) C(64)
# Flatten input BHWC -> BHW, C
flat_input = inputs.view(-1, self._embedding_dim)
# Calculate distances 计算与embedding space中所有embedding的距离
distances = (torch.sum(flat_input**2, dim=1, keepdim=True)
+ torch.sum(self._embedding.weight**2, dim=1)
- 2 * torch.matmul(flat_input, self._embedding.weight.t()))
# Encoding
encoding_indices = torch.argmin(distances, dim=1).unsqueeze(1) # 取最相似的embedding
encodings = torch.zeros(encoding_indices.shape[0], self._num_embeddings, device=inputs.device)
encodings.scatter_(1, encoding_indices, 1) # 映射为 one-hot vector
# Quantize and unflatten
quantized = torch.matmul(encodings, self._embedding.weight).view(input_shape) # 根据index使用embedding space对应的embedding
# Use EMA to update the embedding vectors
if self.training:
self._ema_cluster_size = self._ema_cluster_size * self._decay + \
(1 - self._decay) * torch.sum(encodings, 0)
# Laplace smoothing of the cluster size
n = torch.sum(self._ema_cluster_size.data)
self._ema_cluster_size = (
(self._ema_cluster_size + self._epsilon)
/ (n + self._num_embeddings * self._epsilon) * n)
dw = torch.matmul(encodings.t(), flat_input)
self._ema_w = nn.Parameter(self._ema_w * self._decay + (1 - self._decay) * dw)
self._embedding.weight = nn.Parameter(self._ema_w / self._ema_cluster_size.unsqueeze(1)) # 论文中公式(8)
# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs) # 计算encoder输出(即inputs)和decoder输入(即quantized)之间的损失
loss = self._commitment_cost * e_latent_loss
# Straight Through Estimator
quantized = inputs + (quantized - inputs).detach() # trick, 将decoder的输入对应的梯度复制,作为encoder的输出对应的梯度
avg_probs = torch.mean(encodings, dim=0)
perplexity = torch.exp(-torch.sum(avg_probs * torch.log(avg_probs + 1e-10)))
# convert quantized from BHWC -> BCHW
return loss, quantized.permute(0, 3, 1, 2).contiguous(), perplexity, encodings
class Residual(nn.Module):
def __init__(self, in_channels, num_hiddens, num_residual_hiddens):
super(Residual, self).__init__()
self._block = nn.Sequential(
nn.ReLU(True),
nn.Conv2d(in_channels = in_channels,
out_channels = num_residual_hiddens,
kernel_size = 3, stride = 1, padding = 1, bias = False),
nn.ReLU(True),
nn.Conv2d(in_channels = num_residual_hiddens,
out_channels = num_hiddens,
kernel_size = 1, stride = 1, bias = False)
)
def forward(self, x):
return x + self._block(x)
class ResidualStack(nn.Module):
def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):
super(ResidualStack, self).__init__()
self._num_residual_layers = num_residual_layers
self._layers = nn.ModuleList([Residual(in_channels, num_hiddens, num_residual_hiddens)
for _ in range(self._num_residual_layers)])
def forward(self, x):
for i in range(self._num_residual_layers):
x = self._layers[i](x)
return F.relu(x)
class Encoder(nn.Module):
def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):
super(Encoder, self).__init__()
self._conv_1 = nn.Conv2d(in_channels = in_channels,
out_channels = num_hiddens//2,
kernel_size = 4,
stride = 2, padding = 1)
self._conv_2 = nn.Conv2d(in_channels = num_hiddens//2,
out_channels = num_hiddens,
kernel_size = 4,
stride = 2, padding = 1)
self._conv_3 = nn.Conv2d(in_channels = num_hiddens,
out_channels = num_hiddens,
kernel_size = 3,
stride = 1, padding = 1)
self._residual_stack = ResidualStack(in_channels = num_hiddens,
num_hiddens = num_hiddens,
num_residual_layers = num_residual_layers,
num_residual_hiddens = num_residual_hiddens)
def forward(self, inputs):
x = self._conv_1(inputs)
x = F.relu(x)
x = self._conv_2(x)
x = F.relu(x)
x = self._conv_3(x)
return self._residual_stack(x)
class Decoder(nn.Module):
def __init__(self, in_channels, num_hiddens, num_residual_layers, num_residual_hiddens):
super(Decoder, self).__init__()
self._conv_1 = nn.Conv2d(in_channels=in_channels,
out_channels=num_hiddens,
kernel_size=3,
stride=1, padding=1)
self._residual_stack = ResidualStack(in_channels=num_hiddens,
num_hiddens=num_hiddens,
num_residual_layers=num_residual_layers,
num_residual_hiddens=num_residual_hiddens)
self._conv_trans_1 = nn.ConvTranspose2d(in_channels=num_hiddens,
out_channels=num_hiddens//2,
kernel_size=4,
stride=2, padding=1)
self._conv_trans_2 = nn.ConvTranspose2d(in_channels=num_hiddens//2,
out_channels=3,
kernel_size=4,
stride=2, padding=1)
def forward(self, inputs):
x = self._conv_1(inputs)
x = self._residual_stack(x)
x = self._conv_trans_1(x)
x = F.relu(x)
return self._conv_trans_2(x)
class Model(nn.Module):
def __init__(self, num_hiddens, num_residual_layers, num_residual_hiddens,
num_embeddings, embedding_dim, commitment_cost, decay=0):
super(Model, self).__init__()
self._encoder = Encoder(3, num_hiddens,
num_residual_layers,
num_residual_hiddens)
self._pre_vq_conv = nn.Conv2d(in_channels = num_hiddens,
out_channels = embedding_dim,
kernel_size = 1,
stride = 1)
if decay > 0.0:
self._vq_vae = VectorQuantizerEMA(num_embeddings, embedding_dim,
commitment_cost, decay)
else:
self._vq_vae = VectorQuantizer(num_embeddings, embedding_dim,
commitment_cost)
self._decoder = Decoder(embedding_dim,
num_hiddens,
num_residual_layers,
num_residual_hiddens)
def forward(self, x):
# x.shape: B(256) C(3) H(32) W(32)
z = self._encoder(x)
z = self._pre_vq_conv(z)
loss, quantized, perplexity, _ = self._vq_vae(z)
x_recon = self._decoder(quantized) # decoder解码还原图像 B(256) C(3) H(32) W(32)
return loss, x_recon, perplexity
完整代码参考:liujf69/VQ-VAE
3--部分细节解读:
重构损失计算:
计算源图像和重构图像的MSE损失
vq_loss, data_recon, perplexity = self.model(data)
recon_error = F.mse_loss(data_recon, data) / self.data_variance
VQ量化损失计算:
inputs表示Encoder的输出,quantized是Codebook中与 inputs 最接近的向量;
# Loss
e_latent_loss = F.mse_loss(quantized.detach(), inputs) # 论文中损失函数的第三项
q_latent_loss = F.mse_loss(quantized, inputs.detach()) # 论文中损失函数的第二项
loss = q_latent_loss + self._commitment_cost * e_latent_loss
Decoder的梯度复制到Encoder中:inputs是Encoder的输出,quantized是Decoder的输入;
quantized = inputs + (quantized - inputs).detach() # 梯度复制