环境
微调框架:LLaMA-Efficient-Tuning
训练机器:4*RTX3090TI (24G显存)
python环境:python3.8, 安装requirements.txt
依赖包
一、Lora微调
1、准备数据集
2、训练及测试
1)创建模型输出目录
mkdir -p models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model
2)创建deepspeed配置文件目录
mkdir -p models/baichuan2_13b_chat/deepspeed_config
3)创建deepspeed配置文件
vi models/baichuan2_13b_chat/deepspeed_config/ds_config_baichuan2_13b_chat_multi_gpus_03_epoch100.json
{
"bf16": {
"enabled": true
},
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupDecayLR",
"params": {
"last_batch_iteration": -1,
"total_num_steps": "auto",
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "cpu",
"pin_memory": true
},
"offload_param": {
"device": "cpu",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 2e9,
"stage3_max_reuse_distance": 2e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 2000,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
4)训练模型
deepspeed --num_nodes 1 --num_gpus 4 --master_port=9901 src/train_bash.py \
--stage sft \
--model_name_or_path baichuan-inc/Baichuan2-13B-Chat \
--do_train \
--dataset example1 \
--template baichuan2 \
--finetuning_type lora \
--lora_rank 16 \
--lora_target W_pack,o_proj,gate_proj,down_proj,up_proj \
--output_dir models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model \
--overwrite_cache \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--preprocessing_num_workers 4 \
--lr_scheduler_type cosine \
--logging_steps 10 \
--save_steps 100 \
--learning_rate 5e-3 \
--max_grad_norm 0.5 \
--num_train_epochs 300.0 \
--evaluation_strategy steps \
--plot_loss \
--bf16 \
--deepspeed models/baichuan2_13b_chat/deepspeed_config/ds_config_baichuan2_13b_chat_multi_gpus_03_epoch100.json
[INFO|trainer.py:1686] 2023-09-19 04:07:47,607 >> ***** Running training *****
[INFO|trainer.py:1687] 2023-09-19 04:07:47,607 >> Num examples = 94
[INFO|trainer.py:1688] 2023-09-19 04:07:47,608 >> Num Epochs = 300
[INFO|trainer.py:1689] 2023-09-19 04:07:47,608 >> Instantaneous batch size per device = 4
[INFO|trainer.py:1692] 2023-09-19 04:07:47,608 >> Total train batch size (w. parallel, distributed & accumulation) = 64
[INFO|trainer.py:1693] 2023-09-19 04:07:47,608 >> Gradient Accumulation steps = 4
[INFO|trainer.py:1694] 2023-09-19 04:07:47,608 >> Total optimization steps = 300
[INFO|trainer.py:1695] 2023-09-19 04:07:47,612 >> Number of trainable parameters = 55,787,520
{'loss': 7.7023, 'learning_rate': 0.00488255033557047, 'epoch': 6.67}
{'loss': 7.0675, 'learning_rate': 0.004714765100671141, 'epoch': 13.33}
8%|█████████▊ | 25/300 [17:10<3:07:01, 40.81s/it]
测试模型
python src/cli_demo.py \
--model_name_or_path baichuan-inc/Baichuan2-13B-Chat \
--template baichuan2 \
--finetuning_type lora \
--checkpoint_dir models/baichuan2_13b_chat/train_models/baichuan2_13b_chat_multi_gpus_03_epoch100/train_model
3、注意事项:
1)我用的是3090TI显卡,使用fp16精度时,训练结果始终没有效果,而且训练到后面有(loss为0)的问题。这个不清楚时什么原因。所以需要采用bf16,deepspeed配置文件中要将bf16配置为true。训练时添加参数–bf16 。
所以如果显卡不是 3090TI ,可以尝试用 --fp16。
Refer:
使用baichuan2-13B进行微调时出现loss全为0的情况 Deepspeed zero3对Baichuan系的13b-chat进行微调,微调效果失效(Baichuan-13b-chat和Baichuan2-13b-chat都尝试过)2)deepspeed中 stage
需要选择 3 。尝试过 2 ,内存会溢出。
3) 报错:AttributeError: 'Parameter' object has no attribute 'ds_status'
; 解决办法:关闭验证集,比如 --val_size 0.01, --load_best_model_at_end
Refer:
Baichuan2-13B-Base微调eval报错 此次训练,loss还没降下去,测试效果不太理想。但是知识库微调成功,只是表达凌乱。所以建议如果知识库不大的话,尽量用单卡训练,效果更好。