当前位置:AIGC资讯 > AIGC > 正文

AIGC实战之如何构建出更好的大模型RAG系统

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。

  本文介绍了如何构建出更好的大模型RAG系统,希望能对学习大语言模型和RAG的同学们有所帮助。

文章目录

1. 前言 2. S1 初级RAG 3. S2 高级RAG 3.1 模型测 3.2 策略测 3.3 模型微调测 4. S3 超级RAG 5. 本文作者 6. 内容简介 7. 购买链接

1. 前言

  ChatGPT爆火之后,以ChatPDF为首的产品组合掀起了知识库问答的热潮。

  在过去一整年中,大多数人都在完成RAG系统到高级RAG系统的迭代升级。但是技术发展是迅速的,如何深入了解RAG的发展,做出更好的RAG系统,其实还是非常困难的。

  大模型爆火后的RAG系统发展,大体可以将其分为3个阶段,初级、高级、超级。初级阶段更多的是搭建起系统的pipeline;高级阶段是在召回生成测修修补补,根据badcase反推流程上的优化技巧;超级对应了从Agentic RAG、RAG不存在了、多模态RAG、结构化RAG、GraphRAG、MemoryRAG等技术飞速发展的阶段。

2. S1 初级RAG

  S1阶段处于23年元旦前后,最先在Github出现了一批尝试去复现chatpdf的项目,他们通过对知识库文档进行定长分块建立索引。然后使用用户query去索引中召回相关的文档片段,结合预定义的prompt模板,让LLM生成问题相关的答案。

  其中用到的向量和LLM模型,闭源一般使用openai ada 002 + chatgpt。开源中文测的则比较稀缺,常见的如simbert/text2vec + chatglm v1 6b等。

  大体的一个流程图如下:

图片来自:https://www.promptingguide.ai/research/rag

3. S2 高级RAG

  S2阶段横跨23年整年的时间,大体上可以分为模型测和策略测。

3.1 模型测

  召回模型测:开源社区现在项链模型发力,一些针对QA分布的向量模型开源,如M3E,BGE等。

  生产模型测:国产大模型百花齐放,百川、书生、千问、智谱等。

3.2 策略测

  策略测在卷3大块的内容:

如何保证更好的文档切分?这里诞生了很多的解析,切分,索引构建技巧。

解析测,简单的从纯文本识别,到后来更复杂的借助版式识别+OCR的方式,还要针对表格,图片等单独处理

切分方面,从滑动窗口定长切分到语义,模块化切分等。

索引构建的一些技巧主要是为了应对chunk切分后的信息丢失问题,常见的比如,保留前后块的索引,文档级别的索引构建等。

如何召回的更好?

  召回测的一个出发点是,用来召回的query并非一定是用户的输入query。对此我们可以一下子想起来如query改写,hyde,子问题,step-back等常见策略。当然也有混合搜索这类不属于这个范畴的技巧。

如何生成的更好?

  生成测的一个出发点是,用来生成的内容并非一定是召回的query。从这一点我们也可以想起来如召回内容压缩,内容rerank,溯源,map-reduce等一些策略。

图片来自langchain

3.3 模型微调测

  RAG系统的主要模型还是嵌入模型+生成模型。因此二者的训练方式,也产生了几个不同的大类别。最简单的二者直接使用开源模型,称为Traning free的方式;如果是针对私有化的数据进行训练这2个模型,产生3种训练方式:

方式一:分别独立训练 (Independent Training)

方式二:顺序训练 (Sequential Training),又因为模块的先后,分为LLM First / Retriever First 2种

方式三:联合训练(Joint Training)

图片来自 A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models

4. S3 超级RAG

  S3阶段处于23年底一直到现在,这个阶段RAG的概念几乎是2个月变一次。

  23年底,24年初,开源的大模型已经出现了如Yi-34B,Qwen-72B等具备长上下文能力且效果优异的大模型。RAG的发展注定需要往当时火热的Agent测靠拢。

  Agent的核心为引擎+工具。引擎对整个流程做出决策,如是否调用某个知识库搜索知识,是否需要对结果进行反思重新迭 代等。一个简单的Agentic RAG系统如下图:

图片来自:https://medium.com/@sulaiman.shamasna/rag-iv-agentic-rag-with-llamaindex-b3d80e09eae3

  多模态RAG,结构化RAG,属于小而美的范畴。可能一方面是多模态还没有完全进入工业界,结构化RAG属于NL2SQL的范畴。对于这2个整体上与传统的RAG差异不大,区别在于,多模态流转的中间形态可能是图片,使用clip之类的图文检索模型召回,VL模型进行答案生成。结构化RAG的差异仅在召回测,使用sql、dsl等方式进行结构化数据库的召回。

  24年上半年,部分厂商的RAG系统,在探索新的方向。如contextual.ai发文介绍他们的RAG2.0系统,虽然介绍博客的内容主要是联合训练。斯坦福的大佬们发布了RAPTOR,尝试通过层次的聚类来让RAG索引具备更高级的信息。

图片来自:RAPTOR: RECURSIVE ABSTRACTIVE PROCESSING FOR TREE-ORGANIZED RETRIEVAL

  越来越多的开源框架,在往Agentic RAG方面发展,当然最常见的还是结合self-reflection,self-rag,crag的Agentic RAG系统。

  24年中,微软开源了GraphRAG的项目代码,无数的公众号在炒作这个图谱集合的RAG系统。相比于RAPTOR,GraphRAG在底层的chunk层更拉通,前者的聚类仅限于文档内,在逐级往上到文档间。而基于图谱的RAG在文档间的chunk之间可能会存在实体的连接,从而社区之类之后可以让聚类的社区信息,更好的跨不同的文档。整体上,确实能丰富RAG系统的索引构建,也可以结合传统的高级RAG,实现一个更好的hybird RAG系统。

图片来自:From Local to Global: A Graph RAG Approach to Query-Focused Summarization

  当然24年也有很多RAG不存在的说法,如很多的论文在评估Long Context(LC)大模型与RAG系统准确率的高低之时,RAG系统都处于下风。同时还有一些特殊的开闭源产品,比较常见的就是将知识融合进外挂参数中,最早的如Lamini的Memory Tunning,最近的如智源的MemoRAG。

图片来自:lamini-memory-tuning

5. 本文作者

汪鹏 资深NLP技术专家和AI技术专家,拥有多年NLP落地经验。擅长结合用户场景,针对性地设计图谱、问答、检索、多模态、AIGC等相关的算法和落地方案。在Kaggle获得多枚奖牌,等级master。拥有公众号“NLP前沿”。

6. 内容简介

《大模型RAG实战:RAG原理、应用与系统构建》

汪鹏 谷清水 卞龙鹏 著

多年大厂工作经验的资深AI技术专家撰写
指导读者深入理解RAG技术原理

学会RAG落地应用技巧

掌握RAG系统构建方法

快速掌握大模型应用开发

内容简介:

这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。

7. 购买链接

  本书的京东购买链接为:大模型RAG实战 RAG原理 应用与系统构建。

总结

  大家好,我是爱编程的喵喵。双985硕士毕业,现担任全栈工程师一职,热衷于将数据思维应用到工作与生活中。从事机器学习以及相关的前后端开发工作。曾在阿里云、科大讯飞、CCF等比赛获得多次Top名次。现为CSDN博客专家、人工智能领域优质创作者。喜欢通过博客创作的方式对所学的知识进行总结与归纳,不仅形成深入且独到的理解,而且能够帮助新手快速入门。


  本文介绍了如何构建出更好的大模型RAG系统,希望能对学习大语言模型和RAG的同学们有所帮助。



文章目录



1. 前言
2. S1 初级RAG
3. S2 高级RAG
3.1 模型测
3.2 策略测
3.3 模型微调测
4. S3 超级RAG
5. 本文作者
6. 内容简介
7. 购买链接




1. 前言


  ChatGPT爆火之后,以ChatPDF为首的产品组合掀起了知识库问答的热潮。


  在过去一整年中,大多数人都在完成RAG系统到高级RAG系统的迭代升级。但是技术发展是迅速的,如何深入了解RAG的发展,做出更好的RAG系统,其实还是非常困难的。



  大模型爆火后的RAG系统发展,大体可以将其分为3个阶段,初级、高级、超级。初级阶段更多的是搭建起系统的pipeline;高级阶段是在召回生成测修修补补,根据badcase反推流程上的优化技巧;超级对应了从Agentic RAG、RAG不存在了、多模态RAG、结构化RAG、GraphRAG、MemoryRAG等技术飞速发展的阶段。



2. S1 初级RAG


  S1阶段处于23年元旦前后,最先在Github出现了一批尝试去复现chatpdf的项目,他们通过对知识库文档进行定长分块建立索引。然后使用用户query去索引中召回相关的文档片段,结合预定义的prompt模板,让LLM生成问题相关的答案。


  其中用到的向量和LLM模型,闭源一般使用openai ada 002 + chatgpt。开源中文测的则比较稀缺,常见的如simbert/text2vec + chatglm v1 6b等。


  大体的一个流程图如下:



图片来自:https://www.promptingguide.ai/research/rag


3. S2 高级RAG


  S2阶段横跨23年整年的时间,大体上可以分为模型测和策略测。



3.1 模型测


  召回模型测:开源社区现在项链模型发力,一些针对QA分布的向量模型开源,如M3E,BGE等。


  生产模型测:国产大模型百花齐放,百川、书生、千问、智谱等。



3.2 策略测


  策略测在卷3大块的内容:


如何保证更好的文档切分?这里诞生了很多的解析,切分,索引构建技巧。



解析测,简单的从纯文本识别,到后来更复杂的借助版式识别+OCR的方式,还要针对表格,图片等单独处理


切分方面,从滑动窗口定长切分到语义,模块化切分等。


索引构建的一些技巧主要是为了应对chunk切分后的信息丢失问题,常见的比如,保留前后块的索引,文档级别的索引构建等。


如何召回的更好?


  召回测的一个出发点是,用来召回的query并非一定是用户的输入query。对此我们可以一下子想起来如query改写,hyde,子问题,step-back等常见策略。当然也有混合搜索这类不属于这个范畴的技巧。


如何生成的更好?

  生成测的一个出发点是,用来生成的内容并非一定是召回的query。从这一点我们也可以想起来如召回内容压缩,内容rerank,溯源,map-reduce等一些策略。



图片来自langchain


3.3 模型微调测


  RAG系统的主要模型还是嵌入模型+生成模型。因此二者的训练方式,也产生了几个不同的大类别。最简单的二者直接使用开源模型,称为Traning free的方式;如果是针对私有化的数据进行训练这2个模型,产生3种训练方式:


方式一:分别独立训练 (Independent Training)


方式二:顺序训练 (Sequential Training),又因为模块的先后,分为LLM First / Retriever First 2种


方式三:联合训练(Joint Training)



图片来自 A Survey on RAG Meeting LLMs: Towards Retrieval-Augmented Large Language Models


4. S3 超级RAG


  S3阶段处于23年底一直到现在,这个阶段RAG的概念几乎是2个月变一次。


  23年底,24年初,开源的大模型已经出现了如Yi-34B,Qwen-72B等具备长上下文能力且效果优异的大模型。RAG的发展注定需要往当时火热的Agent测靠拢。


  Agent的核心为引擎+工具。引擎对整个流程做出决策,如是否调用某个知识库搜索知识,是否需要对结果进行反思重新迭 代等。一个简单的Agentic RAG系统如下图:



图片来自:https://medium.com/@sulaiman.shamasna/rag-iv-agentic-rag-with-llamaindex-b3d80e09eae3

  多模态RAG,结构化RAG,属于小而美的范畴。可能一方面是多模态还没有完全进入工业界,结构化RAG属于NL2SQL的范畴。对于这2个整体上与传统的RAG差异不大,区别在于,多模态流转的中间形态可能是图片,使用clip之类的图文检索模型召回,VL模型进行答案生成。结构化RAG的差异仅在召回测,使用sql、dsl等方式进行结构化数据库的召回。


  24年上半年,部分厂商的RAG系统,在探索新的方向。如contextual.ai发文介绍他们的RAG2.0系统,虽然介绍博客的内容主要是联合训练。斯坦福的大佬们发布了RAPTOR,尝试通过层次的聚类来让RAG索引具备更高级的信息。



图片来自:RAPTOR: RECURSIVE ABSTRACTIVE PROCESSING FOR TREE-ORGANIZED RETRIEVAL

  越来越多的开源框架,在往Agentic RAG方面发展,当然最常见的还是结合self-reflection,self-rag,crag的Agentic RAG系统。


  24年中,微软开源了GraphRAG的项目代码,无数的公众号在炒作这个图谱集合的RAG系统。相比于RAPTOR,GraphRAG在底层的chunk层更拉通,前者的聚类仅限于文档内,在逐级往上到文档间。而基于图谱的RAG在文档间的chunk之间可能会存在实体的连接,从而社区之类之后可以让聚类的社区信息,更好的跨不同的文档。整体上,确实能丰富RAG系统的索引构建,也可以结合传统的高级RAG,实现一个更好的hybird RAG系统。



图片来自:From Local to Global: A Graph RAG Approach to Query-Focused Summarization

  当然24年也有很多RAG不存在的说法,如很多的论文在评估Long Context(LC)大模型与RAG系统准确率的高低之时,RAG系统都处于下风。同时还有一些特殊的开闭源产品,比较常见的就是将知识融合进外挂参数中,最早的如Lamini的Memory Tunning,最近的如智源的MemoRAG。



图片来自:lamini-memory-tuning


5. 本文作者


汪鹏 资深NLP技术专家和AI技术专家,拥有多年NLP落地经验。擅长结合用户场景,针对性地设计图谱、问答、检索、多模态、AIGC等相关的算法和落地方案。在Kaggle获得多枚奖牌,等级master。拥有公众号“NLP前沿”。



6. 内容简介



《大模型RAG实战:RAG原理、应用与系统构建》


汪鹏 谷清水 卞龙鹏 著


多年大厂工作经验的资深AI技术专家撰写
指导读者深入理解RAG技术原理


学会RAG落地应用技巧


掌握RAG系统构建方法


快速掌握大模型应用开发


内容简介:


这是一本全面讲解RAG技术原理、实战应用与系统构建的著作。作者结合自身丰富的实战经验,详细阐述了RAG的基础原理、核心组件、优缺点以及使用场景,同时探讨了RAG在大模型应用开发中的变革与潜力。书中不仅揭示了RAG技术背后的数学原理,还通过丰富的案例与代码实现,引导读者从理论走向实践,轻松掌握RAG系统的构建与优化。无论你是深度学习初学者,还是希望提升RAG应用技能的开发者,本书都将为你提供宝贵的参考与指导。




7. 购买链接


  本书的京东购买链接为:大模型RAG实战 RAG原理 应用与系统构建。

更新时间 2024-09-22