计划本地部署stable diffusion,然后将其软件化为exe(始终认为用gradio属于原型开发,而不是部署落地)
1 一键安装包
目前比较主流的有秋叶包,提取码:xvro
2 代码开发
安装xformer
pip install xformers==0.0.20
环境
torch 2.0.1+cu118
python 3.10.13
cuda 11.8
整个代码
import torch
import requests
from PIL import Image
from io import BytesIO
from matplotlib import pyplot as plt
# We'll be exploring a number of pipelines today!
from diffusers import (
StableDiffusionPipeline,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipeline,
StableDiffusionDepth2ImgPipeline
)
# Set device
device = (
"mps"
if torch.backends.mps.is_available()
else "cuda"
if torch.cuda.is_available()
else "cpu"
)
# Load the pipeline
model_id = "stabilityai/stable-diffusion-2-1-base"
pipe = StableDiffusionPipeline.from_pretrained(model_id).to(device)
# Set up a generator for reproducibility
generator = torch.Generator(device=device).manual_seed(42)
# Run the pipeline, showing some of the available arguments
pipe_output = pipe(
prompt="A passionate couple, Asia boy and girl, ", # What to generate
negative_prompt="Oversaturated, blurry, low quality", # What NOT to generate
height=480, width=640, # Specify the image size
guidance_scale=8, # How strongly to follow the prompt
num_inference_steps=35, # How many steps to take
generator=generator # Fixed random seed
)
# View the resulting image:
image = pipe_output.images[0]
image.show()
SDXL_DEMO
SDXLSourceCode