NeurIPS收录的一项新研究,让大模型也学会“读心术”了!
通过学习脑电波数据,模型成功地把受试者的脑电图信号翻译成了文本。
而且整个过程不需要大型设备,只要一块特制的“头巾”就能实现。
这项成果名为DeWave,能在不通过侵入式设备和MRI的情况下解读脑电波并翻译成文本。
由于用了大模型来读脑,因此报道DeWave的iFLScience也管它叫BrainGPT。
DeWave虽然不是最早实现脑电波解码的技术,但是它第一个做到了非侵入且无需MRI的脑电波-文本转换。
如果能够规模化运用,DeWave将为脑部瘫痪的人群提供交流上的帮助。
那么,DeWave的表现到底怎么样呢?
测评成绩超SOTA
由于DeWave采用非侵入式方法,信号中的噪声更强,解析难度更高,但相比于此前的SOTA方法,DeWave的测试成绩还是有所提高。
研究团队采用了公开的ZuCo数据集,其中包含了一万多个不重复的句子;受试者进行自然阅读的同时,研究团队对他们的脑信号和正在阅读的文本进行记录。脑电波信号采样频率为500Hz,包含128个信道。
如果输入的EEG信息已经按照眼动追踪方式的特征切分好,那么DeWave大概可以准确解读出句子的三分之一;即使不切分也能够成功捕捉一部分的关键词。
研究结果还显示,DeWave对单词的解析准确率高于整句,对动词的准确率高于名词。
数据方面,研究团队一共让DeWave对29名受试者的脑电图进行了采集和解析。
结果显示,有切分时,DeWave在BLUE-N数据集上成绩比传统方法高出了3-18%,在ROUGE-1数据集上也有最高6.35%的提升。
如果不做切分,DeWave与相同条件的传统方法相比,表现最多提升了120%。
为了评估DeWave的鲁棒性,团队对其进行了跨受试者(Cross-subject)测试。
这轮测试一共有18名受试者,其中一人的脑电波相信被用于训练。
然后,研究团队观察了模型在其他17人上进行测试时的表现,与被用于训练的人差距越小,说明模型的鲁棒性越强。
结果显示,DeWave的分数下降值低于传统模型,显示出了更强的鲁棒性和泛化能力。
那么,DeWave是如何实现脑电波解码的呢?
用大模型解读脑电波
DeWave的核心是引入了名为“离散码本”的概念。
通过向量化编码器,连续的脑电图信号被拆分为离散形式,分别与词汇进行对齐。
之后,研究团队将离散化的数据送入Transformer编码器,得到上下文语义融合的向量表示。
将向量化的文本信息作为监督数据,用得到的向量化信号对BART大模型进行训练,就得到了DeWave。
新的信号解析过程也与之相似——先进行离散化和向量化编码,然后用BART对其进行解读,就得到了文本信息。
同时,为了增强可解码性研究团队还通过正负样本对编码进行调节,使DeWave解析出的语义更接近目标文本词向量。
作者简介
DeWave团队一共有五名成员,全都是华人。
第一作者是悉尼科技大学的Yiqun Duan,来自H(Human-centric)AI研究中心,研究方向是机器智能和脑机接口。
除了DeWave,Duan此前还有一项基于扩散模型的“反向成果”——把文字转换成脑电波的工具BrainDiffusion。
该研究中心主任Chin-Teng Lin教授是本文的通讯作者。
同实验室的Jinzhao Zhou和Yu-Kai Wang,以及悉尼大学的Zhen Wang也参与了此项目。
论文地址:
https://arxiv.org/abs/2309.14030v2
参考链接:
https://www.iflscience.com/new-mind-reading-braingpt-turns-thoughts-into-text-on-screen-72054