1、Attention中q,经下式,生成新的q。m为句长length,d为embedding_dim/head
θ
i
=
1
1000
0
2
i
d
\theta_i=\frac{1}{10000^\frac{2i}{d}}
θi=10000d2i1
2、LLaMA中RoPE源码
import torch
def precompute_freqs_cis(dim: int, end: int, constant: float = 10000.0):
'''
计算cos和sin的值,cos值在实部,sin值在虚部,类似于 cosx+j*sinx
:param dim: q,k,v的最后一维,一般为emb_dim/head_num
:param end: 句长length
:param constant: 这里指10000
:return:
复数计算 torch.polar(a, t)输出, a*(cos(t)+j*sin(t))
'''
# freqs: 计算 1/(10000^(2i/d) ),将结果作为参数theta
# 形式化为 [theta_0, theta_1, ..., theta_(d/2-1)]
freqs = 1.0 / (constant ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim)) # [d/2]
# 计算m
t = torch.arange(end, device=freqs.device) # [length]
# 计算m*theta
freqs = torch.outer(t, freqs).float() # [length, d/2]
# freqs形式化为 [m*theta_0, m*theta_1, ..., m*theta_(d/2-1)],其中 m=0,1,...,length-1
# 计算cos(m*theta)+j*sin(m*theta)
freqs_cis = torch.polar(torch.ones_like(freqs), freqs) # complex64
# freqs_cis: [cos(m*theta_0)+j*sin(m*theta_0), cos(m*theta_1)+j*sin(m*theta_1),), ..., cos(m*theta_(d/2-1))+j*sin(m*theta_(d/2-1))]
# 其中j为虚数单位, m=0,1,...,length-1
return freqs_cis # [length, d/2]
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)] # (1, length, 1, d/2)
return freqs_cis.view(*shape) # [1, length, 1, d/2]
def apply_rotary_emb(xq: torch.Tensor, xk: torch.Tensor, freqs_cis: torch.Tensor,):
# 先将xq维度变为[bs, length, head, d/2, 2], 利用torch.view_as_complex转变为复数
# xq:[q0, q1, .., q(d-1)] 转变为 xq_: [q0+j*q1, q2+j*q3, ..., q(d-2)+j*q(d-1)]
xq_ = torch.view_as_complex(xq.float().reshape(*xq.shape[:-1], -1, 2)) # [bs, length, head, d/2]
# 同样的,xk_:[k0+j*k1, k2+j*k3, ..., k(d-2)+j*k(d-1)]
xk_ = torch.view_as_complex(xk.float().reshape(*xk.shape[:-1], -1, 2))
freqs_cis = reshape_for_broadcast(freqs_cis, xq_) # [1, length, 1, d/2]
# 下式xq_ * freqs_cis形式化输出,以第一个为例, 如下
# (q0+j*q1)(cos(m*theta_0)+j*sin(m*theta_0)) = q0*cos(m*theta_0)-q1*sin(m*theta_0) + j*(q1*cos(m*theta_0)+q0*sin(m*theta_0))
# 上式的实部为q0*cos(m*theta_0)-q1*sin(m*theta_0),虚部为q1*cos(m*theta_0)+q0*sin(m*theta_0)
# 然后通过torch.view_as_real函数,取出实部和虚部,维度由[bs, length, head, d/2]变为[bs, length, head, d/2, 2],最后一维放实部与虚部
# 最后经flatten函数将维度拉平,即[bs, length, head, d]
# 此时xq_out形式化为 [实部0,虚部0,实部1,虚部1,..., 实部(d/2-1), 虚部(d/2-1)]
xq_out = torch.view_as_real(xq_ * freqs_cis).flatten(3) # [bs, length, head, d]
# 即为新生成的q
xk_out = torch.view_as_real(xk_ * freqs_cis).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
if __name__=='__main__':
# (bs, length, head, d)
q = torch.randn((2, 10, 12, 32)) # q=[q0, q1, .., qd-1]
k = torch.randn((2, 10, 12, 32))
v = torch.randn((2, 10, 12, 32))
freqs_cis= precompute_freqs_cis(dim=32, end=10, constant= 10000.0)
# print(freqs_cis.detach().numpy())
q_new, k_new = apply_rotary_emb(xq=q, xk=k, freqs_cis=freqs_cis)
print()
3、表示
看1中的公式表示,q0和q1相互作用,得到新的q0和q1,也即
q
0
n
e
w
=
q
0
∗
c
o
s
(
m
θ
0
)
−
q
1
∗
s
i
n
(
m
θ
0
)
q^{new}_0=q_0*cos(m\theta_0)-q_1*sin(m\theta_0)
q0new=q0∗cos(mθ0)−q1∗sin(mθ0)
q
1
n
e
w
=
q
1
∗
c
o
s
(
m
θ
0
)
+
q
0
∗
s
i
n
(
m
θ
0
)
q^{new}_1=q_1*cos(m\theta_0)+q_0*sin(m\theta_0)
q1new=q1∗cos(mθ0)+q0∗sin(mθ0)
这里将
(
q
0
,
q
1
)
(q_0,q_1)
(q0,q1)、
(
q
0
n
e
w
,
q
1
n
e
w
)
(q^{new}_0,q^{new}_1)
(q0new,q1new)看做向量,很明显上式是向量旋转,旋转角度为逆时针
m
θ
0
m\theta_0
mθ0
可与PalM中ROPE实现方式做对比
PaLM中ROPE位置编码实现源码解析