当前位置:AIGC资讯 > AIGC > 正文

人工智能时代:让AIGC成为你的外部智慧源(文末送书)


?个人主页:聆风吟
?系列专栏:数据结构、网络奇遇记
?少年有梦不应止于心动,更要付诸行动。

文章目录

?前言 一. 什么是AIGC? 二. AIGC如何运作? 2.1 步骤一:收集数据 2.2 步骤二:模型训练 2.3 步骤三:内容生成 2.4 步骤四:反馈和改进 三. AIGC的主要特征 3.1 文本生成 3.2 图像生成 3.3 语音生成 3.4 视频生成 四. AIGC关键技术能力 五. AIGC常用软件 5.1 ChatGPT 5.2 Midjourney 5.3 Stable Diffusion 5.4 文言一心 六. AIGC的优势和挑战 6.1 优势 6.2 挑战 七. 书籍推荐 7.1 书籍介绍 7.2 作者简介 7.3 购买链接&粉丝福利

参与活动方式文末详见。

?前言

随着人工智能技术的不断发展,我们进入了一个信息爆炸的时代,信息量庞大,但也难免产生了信息过载的问题。为了解决这一问题,人工智能生成内容技术(AIGC)应运而生。

生成式人工智能AIGC(Artificial Intelligence Generated Content)是人工智能1.0时代进入2.0时代的重要标志。


一. 什么是AIGC?

AIGC是一种新的人工智能技术,它的全称是Artificial Intelligence Generative Content,即人工智能生成内容。

它是一种基于机器学习和自然语言处理的技术,能够自动产生文本、图像、音频等多种类型的内容。这些内容可以是新闻文章、小说、图片、音乐,甚至可以是软件代码。AIGC系统通过分析大量的数据和文本,学会了模仿人类的创造力,生成高质量的内容。


二. AIGC如何运作?

通过单个大规模数据的学习训练,令AI具备了多个不同领域的知识,只需要对模型进行适当的调整修正,就能完成真实场景的任务。AIGC的工作原理可以分为以下几个步骤:

2.1 步骤一:收集数据

AIGC 需要大量的数据来学习和理解人类创作的内容。这些数据可以包括书籍、文章、图片、音频和视频等各种形式的媒体。

2.2 步骤二:模型训练

基于收集的数据,AIGC利用深度学习模型进行训练。这些模型通常是神经网络,它们通过学习文本、图像或音频的模式和语法规则来生成新内容。

2.3 步骤三:内容生成

一旦模型训练好,它就可以开始生成内容。用户可以输入一些基本的信息或要求,然后AIGC会根据这些信息生成相应的内容。这可以是新闻文章、小说、音乐、绘画等各种类型的作品。

2.4 步骤四:反馈和改进

AIGC通常会用户的反馈,用于改进接收的内容。这有助于模型不断学习并提高生成质量。


三. AIGC的主要特征

现阶段国内AIGC多以单模型应用的形式出现,主要分为文本生成、图像生成、视频生成、音频生成,其中文本生成成为其他内容生成的基础。

3.1 文本生成

文本生成(AI Text Generation),人工智能文本生成是使用人工智能(AI)算法和模型来生成模仿人类书写内容的文本。它涉及在现有文本的大型数据集上训练机器学习模型,以生成在风格、语气和内容上与输入数据相似的新文本。

3.2 图像生成

图像生成(AI Image Generation),人工智能(AI)可用于生成非人类艺术家作品的图像。这种类型的图像被称为“人工智能生成的图像”。人工智能图像可以是现实的或抽象的,也可以传达特定的主题或信息。

3.3 语音生成

语音生成(AI Audio Generation),AIGC的音频生成技术可以分为两类,分别是文本到语音合成和语音克隆。文本到语音合成需要输入文本并输出特定说话者的语音,主要用于机器人和语音播报任务。到目前为止,文本转语音任务已经相对成熟,语音质量已达到自然标准,未来将向更具情感的语音合成和小样本语音学习方向发展;语音克隆以给定的目标语音作为输入,然后将输入语音或文本转换为目标说话人的语音。此类任务用于智能配音等类似场景,合成特定说话人的语音。

3.4 视频生成

视频生成(AI Video Generation),AIGC已被用于视频剪辑处理以生成预告片和宣传视频。工作流程类似于图像生成,视频的每一帧都在帧级别进行处理,然后利用 AI 算法检测视频片段。AIGC生成引人入胜且高效的宣传视频的能力是通过结合不同的AI算法实现的。凭借其先进的功能和日益普及,AIGC可能会继续革新视频内容的创建和营销方式。


四. AIGC关键技术能力

实现AIGC更加智能化、实用化的三大要素是:数据算力算法

数据:AIGC人有我优的核心基础,包括存储(集中式数据库、分布式数据库、云原生数据库、向量数据库)、来源(用户数据、公开域数据、私有域数据)、形态(结构化数据、非结构化数据)、处理(筛选、标注、处理、增强…)

算力:为AIGC提供基础算力的平台,包括半导体(CPU、GPU、DPU、TPU、NPU)、服务器、大模型算力集群、基于IaaS搭建分布式训练环境、自建数据中心部署。

算法:通过模型设计、模型训练、模型推理、模型部署步骤,完成从机器学习平台、模型训练平台到自动建模平台的构建,实现对实际业务的支撑与覆盖。


五. AIGC常用软件

5.1 ChatGPT

ChatGPT是由OpenAI开发的一款大型预训练语言模型,就像一个会聊天的机器人。 它可以理解你说的话,并给出回答。这个机器人在互联网上读了很多书、文章,学到了很多知识,所以可以回答各种问题,甚至进行深入的讨论。不过,ChatGPT的理解与人类不同,人类理解事物时,有意识、经验和情感等多个层次的参与,而ChatGPT只是通过分析和模拟大量的文本数据来"学习"如何合理地回应。

5.2 Midjourney

Midjourney是由美国旧金山的一家独立研究实验室创立的图片类AIGC应用程序,我们可以通过语言描述来生成图片。比如,输入一个苹果,它就会为你生成出一张苹果的图片。

5.3 Stable Diffusion

图片生成类AI大模型,可以在给定的任何提示词下生成图像,并支持根据关键词和图片检索。与Midjourney相比,生成图像的结果更可控。

5.4 文言一心

文心一言是百度全新一代知识增强大语言模型,能够与人对话互动、回答问题、协助创作,具备更强的中文理解能力。


六. AIGC的优势和挑战

6.1 优势

效率:AIGC可以大幅提高内容生成的速度,节省时间和资源。

一致性:生成的内容通常保持一致,避免出现错误。

个性化:AIGC可以根据用户需求生成定制内容。

大规模生产:AIGC可以轻松应对大规模的内容生成需求。

6.2 挑战

质量问题:虽然AIGC的生成质量不断提高,但仍然存在错误和不准确的问题。

伦理问题:AIGC可能被用于虚假信息传播、伪造文档等不道德行为。

人类替代方案:自动化内容生成可能导致人类工作岗位减少,引发社会问题。

隐私问题:AIGC使用大量数据,引发隐私和数据安全问题。


七. 书籍推荐

7.1 书籍介绍


《AIGC:让生成式AI成为自己的外脑》针对近期较为火热的AIGC技术及其相关话题,介绍AIGC的技术原理、专业知识和应用。

全书共分为九章。

第一章介绍AIGC技术的基本概念和发展历程; 第二、三章介绍AIGC的基础技术栈和拓展技术栈; 第四、五章分别讨论了AIGC技术在文本生成和图像生成两个领域的现状和前景; 第六章列举了目前较为热门的AIGC技术应用; 第七章描述了AIGC的上、中、下游产业链及未来前景; 第八章主要关注AIGC在法律和道德上可能存在的争议与问题; 第九章对AIGC技术进行了总结与展望。全书运用可视化的表达方式,对较为复杂的概念进行了生动易懂的阐述。

7.2 作者简介

成生辉博士现任西湖大学西湖学者,智能可视化实验室负责人。他于纽约州立大学石溪分校获得计算机科学博士学位,并在美国布鲁克海文国家实验室、哈佛医学院进行研究,曾任世界银行(总部)数字经济组顾问。他的主要研究对象为元宇宙、可视化、可视分析等。他曾任大数据高峰论坛执行主席,国际可视化年会、太平洋可视化大会、中国可视化大会等项目委员会委员。发表论文30多篇,专著6部,包括《元宇宙:概念、技术及生态》等,入选深圳和杭州市海外高层次人才,浙江省高校领军人才培养计划。

7.3 购买链接&粉丝福利

京东购买链接:https://item.jd.com/13914487.html

送书规则:

✅参与方式:关注博主、点赞、收藏、评论(每人最多评论三次)

⛳️本次送书1~2本【取决于阅读量,阅读量越多,送的越多】

? 活动截止时间:2023-1-28 12:00:00 | 由博主动态公布抽奖结果

?注:活动结束后,会私信中奖粉丝的,各位注意查看私信哦!

更新时间 2024-01-26