当前位置:AIGC资讯 > AIGC > 正文

从Hugging Face下载数据测试whisper、fast_whisper耗时

时长比较短的音频:https://huggingface.co/datasets/PolyAI/minds14/viewer/en-US

时长比较长的音频:https://huggingface.co/datasets/librispeech_asr?row=8

此次测试过程暂时只使用比较短的音频

使用fast_whisper测试

下载安装,参考官方网站即可

 报错提示:

Could not load library libcudnn_ops_infer.so.8. Error: libcudnn_ops_infer.so.8: cannot open shared object file: No such file or directory
Please make sure libcudnn_ops_infer.so.8 is in your library path!

解决办法:

找到有libcudnn_ops_infer.so.8 的路径,在我的电脑中,改文件所在的路径为

在终端导入  export LD_LIBRARY_PATH=/opt/audio/venv/lib/python3.10/site-packages/nvidia/cudnn/lib:$LD_LIBRARY_PATH

test_fast_whisper.py


import subprocess
import os
import time
import unittest
import openpyxl
from pydub import AudioSegment
from datasets import load_dataset

from faster_whisper import WhisperModel

class TestFastWhisper(unittest.TestCase):

    def setUp(self):
        pass
    def test_fastwhisper(self):
        # 替换为您的脚本路径
        
        # 设置HTTP代理
        os.environ["http_proxy"] = "http://10.10.10.178:7890"
        os.environ["HTTP_PROXY"] = "http://10.10.10.178:7890"
        # 不知道此处为什么不能生效,必须要在终端中手动导入
        os.environ["LD_LIBRARY_PATH"] = "/opt/audio/venv/lib/python3.10/site-packages/nvidia/cudnn/lib:$LD_LIBRARY_PATH"
        
        # 设置HTTPS代理
        os.environ["https_proxy"] = "http://10.10.10.178:7890"
        os.environ["HTTPS_PROXY"] = "http://10.10.10.178:7890"
        print("load whisper")
        # 使用fast_whisper 
        model_size = "large-v2"

        # Run on GPU with FP16
        fast_whisper_model = WhisperModel(model_size, device="cuda", compute_type="float16")
        minds_14 = load_dataset("PolyAI/minds14", "en-US", split="train")  # for en-US
        
        workbook = openpyxl.Workbook()
            # 创建一个工作表
        worksheet = workbook.active
        # 设置表头
        worksheet["A1"] = "Audio Path"
        worksheet["B1"] = "Audio Duration (seconds)"
        worksheet["C1"] = "Audio Size (MB)"
        worksheet["D1"] = "Correct Text"
        worksheet["E1"] = "Transcribed Text"
        worksheet["F1"] = "Cost Time (seconds)"
        for index, each in enumerate(minds_14, start=2):
            audioPath = each["path"]
            print(audioPath)
            # audioArray = each["audio"]
            audioDuration = len(AudioSegment.from_file(audioPath))/1000
            audioSize = os.path.getsize(audioPath)/ (1024 * 1024)
            CorrectText = each["transcription"]
            tran_start_time = time.time()
            segments, info = fast_whisper_model.transcribe(audioPath, beam_size=5)
            segments = list(segments)  # The transcription will actually run here.
            print("Detected language '%s' with probability %f" % (info.language, info.language_probability))
            text = ""
            for segment in segments:
                text += segment.text
            cost_time =  time.time() - tran_start_time
            print("Audio Path:", audioPath)
            print("Audio Duration (seconds):", audioDuration)
            print("Audio Size (MB):", audioSize)
            print("Correct Text:", CorrectText)
            print("Transcription Time (seconds):", cost_time)
            print("Transcribed Text:", text)

            worksheet[f"A{index}"] = audioPath
            worksheet[f"B{index}"] = audioDuration
            worksheet[f"C{index}"] = audioSize
            worksheet[f"D{index}"] = CorrectText
            worksheet[f"E{index}"] = text
            worksheet[f"F{index}"] = cost_time
            # break
        workbook.save("fast_whisper_output_data.xlsx")
        print("数据已保存到 fast_whisper_output_data.xlsx 文件")
          
        
if __name__ == '__main__':
    unittest.main()

使用whisper测试

下载安装,参考官方网站即可,代码与上面代码类似

测试结果可视化

不太熟悉用numbers,凑合着看一下就行

很明显,fast_whisper速度要更快一些

更新时间 2024-02-04