-
把检测器加进来,YOLOv8部署实战!
本文经自动驾驶之心公众号授权转载,转载请联系出处。 0 把检测器加进来 本文是我在学习韩博《CUDA与TensorRT部署实战课程》第六章的课程部分输出的个人学习笔记,欢迎大家一起讨论学习! 1 导出onnx需要注意的地方 不要pip instal...
-
你真的看懂扩散模型(diffusion model)了吗?(从DALL·E 2讲起,GAN、VAE、MAE都有)
本文全网原创于CSDN:落难Coder ,未经允许,不得转载! 扩散模型简单介绍 我们来讲一下什么是扩散模型,如果你不了解一些工作,你可能不清楚它究竟是什么。那么我举两个例子说一下:AI作画(输入一些文字就可以得到与你描述相符的图像)和抖音大火的...
-
奥特曼宫斗戏新爆料:自己投芯片公司,让OpenAI签下3.6亿订购意向书
奥特曼又惹上事了。 一份订购意向书曝光,奥特曼任CEO期间,OpenAI承诺从一家初创公司订购芯片,金额高达5100万美元(约合人民币3.6亿元)。 关键问题在于,这家公司Rain AI是奥特曼自己参与投资的。 图片 两家公司总部都在旧金山,相距不到一公...
-
21Dak攻击:计算机顶会PLDI‘23 针对语义依附代码模型的对抗攻击方法:Destroyer篡改输入程序,Finder寻找关键特征,Merger关键特征注入【网安AIGC专题11.22】
Discrete Adversarial Attack to Models of Code 写在最前面 一些对关系抽取和事件抽取相关的启发和思考 摘要 总结与展望 课堂讨论 研究背景与意义 对抗攻击 针对代码模型的对抗攻击 Semanti...
-
用GPT-4V和人类演示训练机器人:眼睛学会了,手也能跟上
如何将语言 / 视觉输入转换为机器人动作? 训练自定义模型的方法已经过时,基于最近大语言模型(LLM)和视觉语言模型(VLM)的技术进展,通过 prompt 工程使用 ChatGPT 或 GPT-4 等通用模型才是时下热门的方法。 这种方法绕过了海量数据...
-
研究称:生成一张AI图像所消耗能源相当于给手机充满电
根据 AI 初创公司 Hugging Face 和卡内基梅隆大学的研究人员进行的一项新研究,每次使用 AI 生成图像、撰写电子邮件或向聊天机器人提问,都会对地球造成一定的负担。 实际上,使用强大的 AI 模型生成一张图像所消耗的能源相当于给手机充满电,该研...
-
微软推出跨平台框架 ML.NET 3.0 版本:强化深度学习功能、加强 AI 计算效率
IT之家 11 月 29 日消息,微软日前宣布推出跨平台机器学习框架 ML.NET 3.0,主要强化了深度学习功能,改进 ML.NET 数据处理能力,并添加了英特尔 oneDAL 加速训练技术,以及自动机器学习等功能。 ▲ 图源微软 IT之家注意到,M...
-
加速人工智能任务,同时保护数据安全
麻省理工学院的研究人员开发了一种搜索引擎 SecureLoop,可以有效地识别深度神经网络加速器的最佳设计,在提高性能的同时保护数据安全。 随着计算密集型机器学习应用程序(例如执行实时语言翻译的聊天机器人)的激增,设备制造商通常会采用专门的硬件组件来...
-
【多模态】3、CLIP | OpenAI 出品使用 4 亿样本训练的图文匹配模型
文章目录 一、背景 二、方法 2.1 使用自然语言来监督训练 2.2 建立一个超大数据集 2.3 选择预训练的方式——对比学习而非预测学习 2.4 模型缩放和选择 三、效果 四、思考 论文:Learning Transferabl...
-
基于Stable Diffusion的图像合成数据集
当前从文本输入生成合成图像的模型不仅能够生成非常逼真的照片,而且还能够处理大量不同的对象。 在论文“评估使用稳定扩散生成的合成图像数据集”中,我们使用“稳定扩散”模型来研究哪些对象和类型表现得如此逼真,以便后续图像分类正确地分配它们。 这使我们能够根据现实...
-
教你如何使用PyTorch解决多分类问题
本文分享自华为云社区《使用PyTorch解决多分类问题:构建、训练和评估深度学习模型》,作者: 小馒头学Python。 引言 当处理多分类问题时,PyTorch是一种非常有用的深度学习框架。在这篇博客中,我们将讨论如何使用PyTorch来解决多分类...
-
【CVHub】《万字长文带你解读AIGC》系列之入门篇
本文来源“CVHub”公众号,侵权删,干货满满。 作者丨派派星 来源丨CVHub 原文链接:《万字长文带你解读AIGC》系列之入门篇 0. 导读 图0 随着ChatGPT的病毒式传播,生成式人工智能(AIGC, a.k.a AI-gener...
-
【AIGC】深入理解 LORA模型
深入理解 LORA模型 LORA模型是一种神经网络模型,它通过学习可以自动调整神经网络中各层之间的权重,以提高模型的性能。本文将深入探讨LORA模型的原理、应用场景、优缺点等方面。 1. LORA模型的原理 LORA模型的全称为Learnable...
-
CVPR 2023 | 去雨去噪去模糊,图像low-level任务,视觉AIGC系列
Learning A Sparse Transformer Network for Effective Image Deraining 基于Transformer的方法在图像去雨任务中取得了显著的性能,因为它们可以对重要的非局部信息进行建模,这对...
-
李飞飞团队新作:脑控机器人做家务,让脑机接口具备少样本学习能力
未来也许只需动动念头,就能让机器人帮你做好家务。斯坦福大学的吴佳俊和李飞飞团队近日提出的 NOIR 系统能让用户通过非侵入式脑电图装置控制机器人完成日常任务。 NOIR 能将你的脑电图信号解码为机器人技能库。它现在已能完成例如烹饪寿喜烧、熨衣服、磨奶酪、...
-
2023年初学者入门 CV 指南概述
计算机视觉,是一个迅速发展的领域,将让你大开眼界。它的核心是教计算机像我们人类一样看和理解视觉信息。这份全面指南,将为我们揭示计算机视觉的基本概念,探索流行的应用程序,并瞥见计算机视觉的未来趋势。 计算机视觉简介:科学和艺术的奇妙交汇 好的,让我们...
-
目标检测标注的时代已经过去了?
在快速发展的机器学习领域,有一个方面一直保持不变:繁琐和耗时的数据标注任务。无论是用于图像分类、目标检测还是语义分割,长期以来人工标记的数据集一直是监督学习的基础。 然而,由于一个创新性的工具 AutoDistill,这种情况可能很快会发生改变。 G...
-
AI生图太诡异?马里兰&NYU合力解剖神经网络,CLIP模型神经元形似骷髅头
AI黑盒如何才能解? 神经网络模型在训练的时,会有些ReLU节点「死亡」,也就是永远输出0,不再有用。 它们往往会被被删除或者忽略。 恰好赶上了模糊了生与死的界限的节日——万圣节,所以这是探索那些「死节点」的好时机。 对于大多数图像生成模型来说,会输出正...
-
你应该知道的十种机器学习算法
机器学习是一门多领域交叉学科,涉及概率论、统计学、逼近论、凸分析、算法复杂度理论等多门学科。专门研究计算机怎样模拟或实现人类的学习行为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善自身的性能。 毫无疑问,机器学习/人工智能领域在将来是越来越...
-
光学矩阵乘法将如何改变人工智能
当前的人工智能世界耗电且计算有限。模型开发的轨迹很快,但随着这种进步,需要大幅增加计算能力。现有的基于晶体管的计算正在接近其物理极限,并且已经难以满足这些不断增长的计算需求。 大型企业已经尝试通过开发自己的定制芯片解决方案来解决这个问题。然而,硬件瓶颈可...
-
比Transformer更好,无Attention、MLPs的BERT、GPT反而更强了
从 BERT、GPT 和 Flan-T5 等语言模型到 SAM 和 Stable Diffusion 等图像模型,Transformer 正以锐不可当之势席卷这个世界,但人们也不禁会问:Transformer 是唯一选择吗? 斯坦福大学和纽约州立大学布法...
-
苹果“套娃”式扩散模型,训练步数减少七成!
苹果的一项最新研究,大幅提高了扩散模型在高分辨率图像上性能。 利用这种方法,同样分辨率的图像,训练步数减少了超过七成。 在1024×1024的分辨率下,图片画质直接拉满,细节都清晰可见。 苹果把这项成果命名为MDM,DM就是扩散模型(Diffusion...