环境安装
推荐使用docker,Ubuntu20.04
https://www.modelscope.cn/docs/%E7%8E%AF%E5%A2%83%E5%AE%89%E8%A3%85
docker pull registry.cn-beijing.aliyuncs.com/modelscope-repo/modelscope:ubuntu22.04-cuda12.1.0-py310-torch2.1.2-tf2.14.0-1.12.0
下载模型
在modelscope主页,找到模型
https://modelscope.cn/models/qwen/Qwen-14B-Chat/summary
可以使用如下脚本
import os
from modelscope import snapshot_download
# cache_dir 指定你的保存模型的路径
model_dir = snapshot_download('qwen/Qwen-14B-Chat',cache_dir="/workspace/models/AI-ModelScope")
微调
使用LLaMA-Factory,
下载下面仓库的代码,
https://github.com/hiyouga/LLaMA-Factory
在代码目录,新建一个脚本 run_train_bash.sh
CUDA_VISIBLE_DEVICES=0,1,2,3,4,5,6,7 accelerate launch src/train_bash.py \
--deepspeed ds_config_zero3.json \
--stage sft \
--do_train True \
--model_name_or_path /workspace/models/AI-ModelScope/qwen/Qwen-14B-Chat/ \
--finetuning_type lora \
--template qwen \
--dataset_dir data \
--dataset lhs_merged_data \
--cutoff_len 1024 \
--learning_rate 5e-04 \
--num_train_epochs 3 \
--max_samples 100000 \
--per_device_train_batch_size 4 \
--gradient_accumulation_steps 4 \
--lr_scheduler_type cosine \
--max_grad_norm 1.0 \
--logging_steps 5 \
--save_steps 100 \
--warmup_steps 0 \
--neftune_noise_alpha 0 \
--lora_rank 8 \
--lora_dropout 0.1 \
--lora_target c_attn \
--output_dir output/qwen_14b_ds/train_2024_02_27 \
--bf16 True \
--plot_loss True
另外,还需要新建一个deepspeed的配置文件,这里使用qwen官方给的例子,新建一个ds_config_zero3.json
https://github.com/QwenLM/Qwen/blob/main/finetune/ds_config_zero3.json
{
"fp16": {
"enabled": "auto",
"loss_scale": 0,
"loss_scale_window": 1000,
"initial_scale_power": 16,
"hysteresis": 2,
"min_loss_scale": 1
},
"bf16": {
"enabled": "auto"
},
"optimizer": {
"type": "AdamW",
"params": {
"lr": "auto",
"betas": "auto",
"eps": "auto",
"weight_decay": "auto"
}
},
"scheduler": {
"type": "WarmupLR",
"params": {
"warmup_min_lr": "auto",
"warmup_max_lr": "auto",
"warmup_num_steps": "auto"
}
},
"zero_optimization": {
"stage": 3,
"offload_optimizer": {
"device": "none",
"pin_memory": true
},
"offload_param": {
"device": "none",
"pin_memory": true
},
"overlap_comm": true,
"contiguous_gradients": true,
"sub_group_size": 1e9,
"reduce_bucket_size": "auto",
"stage3_prefetch_bucket_size": "auto",
"stage3_param_persistence_threshold": "auto",
"stage3_max_live_parameters": 1e9,
"stage3_max_reuse_distance": 1e9,
"stage3_gather_16bit_weights_on_model_save": true
},
"gradient_accumulation_steps": "auto",
"gradient_clipping": "auto",
"steps_per_print": 100,
"train_batch_size": "auto",
"train_micro_batch_size_per_gpu": "auto",
"wall_clock_breakdown": false
}
具体的代码路径如下:
ds_config_zero3.json
运行
直接在终端输入即可,缺什么包,再安装对应的包就可以了。
bash run_train_bash.sh
合并权重
训练完成后,按照LLaMA-Factory readme中提到的合并权重命令进行合并即可,自行修改其中的路径参数
https://github.com/hiyouga/LLaMA-Factory?tab=readme-ov-file#merge-lora-weights-and-export-model
python src/export_model.py \
--model_name_or_path path_to_llama_model \
--adapter_name_or_path path_to_checkpoint \
--template default \
--finetuning_type lora \
--export_dir path_to_export \
--export_size 2 \
--export_legacy_format False
最后,可以使用加载模型测试微调结果。
显存占用: