当前位置:AIGC资讯 > AIGC > 正文

【最新】生成式人工智能(AIGC)与大语言模型(LLM)学习资源汇总

基本概念学习

a) Andrej Karpathy 的 - 大型语言模型简介:https://www.youtube.com/watch?v=zjkBMFhNj_g

该视频对 LLMs 进行了一般性和高级的介绍,涵盖推理、缩放、微调、安全问题和提示注入等主题。

b) Nvidia 的生成式 AI 介绍:Course Detail | NVIDIA

注意:

本课程需要您先登录 nvidia,然后才能看到详细信息。

基本用法学习

a) 微软面向初学者的生成式人工智能:Generative AI for Beginners

我个人发现这是一门优秀的课程,涉及LLMs、提示、RAG、代理、多模式等。

b) Google 的云技能提升:Google Cloud Skills Boost

没有试过,但内容看起来还不错。

提示词工程学习

请注意,提示词工程技术可能看起来很通用,但实际上每个模型系列通常都有适合它们的特定内容。如果您更改型号,可能需要调整提示以获得更好的结果。

(例如,Claude 2.x 使用 XML 标签进行约束或 1 shot 示例效果很好,GPT4 使用 JSON 效果更好)

a) 微软提示词工程简介:Azure OpenAI Service - Azure OpenAI | Microsoft Learn

b) OpenAI 的提示词工程指南:https://platform.openai.com/docs/guides/prompt-engineering

c) Anthropic Claude 的提示词工程指南:Prompt engineering

LLM学习

a) Andrej Karpathy 的 GPT 状态:https://www.youtube.com/watch?v=bZQun8Y4L2A

涵盖从标记到预训练、监督微调和人类反馈强化学习 (RLHF) 等内容。此外,还涵盖了有效使用这些模型的实用技巧和心理模型,包括提示策略、微调等。

b) 可视化介绍:Bycroft 的 LLMs:LLM Visualization

使用 nanoGPT、GPT2、GPT3 对 LLMs 进行出色的可视化和解释

生成式人工智能与机器学习

a) Andrew Ng 的机器学习简介:Machine Learning Specialization [3 courses] (Stanford) | Coursera

深入了解机器学习的权威课程。也涵盖了生成式人工智能。 (94 小时)

b) Fast.ai 的课程:Practical Deep Learning for Coders - Practical Deep Learning

c) 安德烈·卡帕蒂 (Andrej Karpathy) 的《从零到英雄》:Neural Networks: Zero To Hero

这是一个从头开始构建 GPT 的 YouTube 系列。

d) 3Blue1Browns 第 3 季 - 神经网络:https://www.youtube.com/playlist?list=PLZHQObOWTQDNU6R1_67000Dx_ZCJB-3pi

建议从第一季学到第四季,更全面的学习。

e) Google 为高级开发人员提供的云技能提升:Google Cloud Skills Boost

其它

a) 斯坦福人工智能课程:Stanford A.I. Courses – Stanford Artificial Intelligence Laboratory

b) Nvidia 深度学习研究所:Home | NVIDIA

该研究所有一些有趣的自定进度的学习路径。

c) Awesome-generative-ai 上的工具和各种资源列表:GitHub - steven2358/awesome-generative-ai: A curated list of modern Generative Artificial Intelligence projects and services

更新时间 2024-05-31