以上可以看出LLM实际上已经满足了大部分持续学习的性质,百亿千亿级别的大模型经过充足的预训练后,具备大量世界知识以及涌现能力,基于此进行终身学习成为可能。
常见的LLM终身学习方法有Rehearsal(排练), Regularization(正则), Architectural(结构改造)等方式在LLM的参数量和训练模式下其实都不太适用。而LLM本身为了增大参数量和减少推理成本的混合专家方法(Mixture of Experts, MoE) 似乎成了LLM终身学习的新途径。
MoE的简介
MoE即混合专家模型,英文叫Mixture of Experts, 发展至今已有30多年历史。MoE是一种模型设计策略,它通过将多个模型直接结合在一起,以获得更好的预测性能。在大模型中,MoE方案可以有效的提高模型的容量和效率。
一般来说,大模型的MoE有一个门控机制和一套门控输出机制来合并和平衡专家的选择,用于决定每个专家对最终预测的;有一套专家模型选择机制,会根据门控机制的输出选择一部分专家模型进行预测。这样可以较少计算量,并使模型能够针对不同的输入选择最合适的专家模型。
MoE示意图
图中多个Export Network用于学习不同数据,一个Gating Network用于分配每个个Expert的输出权重。对于一个输入样本c,第i个expert的输出为,Ground truth是
则损失函数为:
将提前,使得每个专家模型单独计算损失函数,鼓励不同专家模型的竞争,使得每个数据样尽可能被一个专家处理。专家模型的竞争、合作,以及Gating Network的分发方式,也成为了MoE演进过程中不断更迭出新的方向。2017年MoE已初见成型。
Sparse MoE
Google Brain的Shazeer,Noam,等人提出使用稀疏的MoE结构来将模型容量做大的方法,即:训练时使用海量的专家模型,推理时激活少数专家模型。
Sparse MoE示例图
如上图所示,模型共有n个Expert,Gating Network选择少数Expert进行计算。此外,在训练过程中前期编号的expert会更容易被gating network选择,导致只有少数几个expert有用,这被称为Expert Balancing问题。这时的Sparse MoE目标方向是将模型做大,以及经济高效地进行训练推理。同年,能够并行训练的Transformer的出现将所有人的目光都汇聚了过去。
Transformer MoE
当模型参数量到了千亿这个级别以后,再想向上扩展变得愈发困难,经济实用的MoE又被重启。还是Google,提出了GShard[4],首个将MoE思想拓展到Transformer的工作,而后Siwtch Transformer[5]、GLaM[6]等工作持续改进着Transformer MoE的结构,也将LLM的参数量从千亿推向了万亿级别。
Gshard:首个MoE+Transformer模型
Gshard的论文最早于2020.6.30发表(Gshard Scaling Giant Models with Conditional),Transformer的encoder和decoder中,每隔一个(every other)FFN层,替换成position-wise MoE层。
Switch Transformer号称拥有万亿级别的Transformer类模型
2021年1月,Google大脑团队发布文章“Switch Transformer:scaling to trillion parameter models with simple and efficient sparsity”,其简化了MoE的routing算法,并且gating network 每次只 route 到 1 个 expert。
GlaM:降本增效,精度更为精确
同年,Google的GlaM模型表明,Transformer和MoE风格的层可以组合在一起生成一个模型,在29个基准测试中平均超过GPT-3模型的精度,而使用3倍少的能耗进行训练和2倍少的计算进行推理。
PanGu-Sigma
Pangu-sigma[8]是今年3月华为诺亚方舟实验室基于Pangu-alpha模型进行MoE扩充实现的Lifelong-MoE模型。其提出了随机路由专家(RRE)方法,使得Gating Network也可以随着Expert进行裁剪。下图是PanGu-Sigma的示意图:
这里着重讲一下RRE的设计。前面提到既然可学习的Gating Network很难裁剪,那么可以简单粗暴地使用手动Gating地方式。RRE就是这样地思路,只是为了缓解过于粗暴的领域区分(持续学习的性质之一就是无任务边界,手动Gating一定程度上违背了这一点),RRE做了双层的设计:
第一层,根据任务分配给不同的专家组(多个expert构成一个专家组,供一个task/domain使用)。 第二层,使用组内随机Gating,让专家组的expert可以负载均衡。这样带来的好处是显而易见的,只要对专家组进行裁切,可以完全剥离出某个领域的子模型进行推理部署,同时也可以不断地更新迭代新的专家组,实现Lifelong-learning。下图是预训练好的MoE模型进行子模型抽取的示意图。
以上两个工作,是Lifelong-MoE的两个典型工作,也分别延续了两家公司LLM的能力。但值得额外一提的是,MoE LLM实际上从训练起点分为了两派,分别是from scratch和from pretrained,而GPT4据称是from scratch的8个Expert集合,某种意义上可能更像是回到了ensemble阶段,更多是为了业务效果而非LLM的持续演进。
MoE存在问题
Lifelong-MoE看起来很好用,但是万事皆无完美,但MoE方法本身还是有一些问题,下面进行简单的介绍,也算是后续演进方向的探讨。
MoE结构复杂度Transformer的MoE会对FFN层进行MoE扩展,但是Transformer结构本身还有Multihead Attention结构,这使得MoE扩展会变成Transformer结构的侵入式改造,而不管是训练前并行化的侵入式改造,还是训练完成后进行子模型的抽取,都会因为复杂的结构而需要投入大量人力。
Expert balancing总会有一部分任务或领域占据所有数据的大部分,也一定会有长尾数据,使用等参数量、随机Gating的方式进行强制的均衡分配,实际上也是在伤害模型对现实世界的拟合。神经网络特点决定的嬴者通吃。Gating Network可学习会很自然的朝着几个拟合较好的Expert进行数据分配,这一点仍需要大量的尝试和研究,也许可以缓解,也许可以解决。
分布式通信问题当下的LLM预训练必然是要使用分布式并行切分的,而MoE结构和普通的Dense模型的差异在于,其需要额外的AllToAll通信,来实现数据的路由(Gating)和结果的回收。而AllToAll通信会跨Node(服务器)、跨pod(路由),进而造成大量的通信阻塞问题。
点击关注,第一时间了解华为云新鲜技术~