1.web demo部署
环境配置
conda create -n llama3 python=3.10
conda activate llama3
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
模型下载
git clone https://code.openxlab.org.cn/MrCat/Llama-3-8B-Instruct.git Meta-Llama-3-8B-Instruct
ln -s /root/share/new_models/meta-llama/Meta-Llama-3-8B-Instruct ~/model/Meta-Llama-3-8B-Instruct
cd ~
git clone https://github.com/SmartFlowAI/Llama3-Tutorial
cd ~
git clone -b v0.1.18 GitHub - InternLM/xtuner: An efficient, flexible and full-featured toolkit for fine-tuning large models (InternLM2, Llama3, Phi3, Qwen, Mistral, ...) //XTuner下载
cd XTuner
pip install -e .
运行
streamlit run ~/Llama3-Tutorial/tools/internstudio_web_demo.py \
~/model/Meta-Llama-3-8B-Instruct
结果如下
2.认知微调
cd ~/Llama3-Tutorial
# 开始训练,使用 deepspeed 加速,A100 40G显存 耗时24分钟
xtuner train configs/assistant/llama3_8b_instruct_qlora_assistant.py --work-dir /root/llama3_pth
# Adapter PTH 转 HF 格式
xtuner convert pth_to_hf /root/llama3_pth/llama3_8b_instruct_qlora_assistant.py \
/root/llama3_pth/iter_500.pth \
/root/llama3_hf_adapter
# 模型合并
export MKL_SERVICE_FORCE_INTEL=1
xtuner convert merge /root/model/Meta-Llama-3-8B-Instruct \
/root/llama3_hf_adapter\
/root/llama3_hf_merged
完成合并,进入web
streamlit run ~/Llama3-Tutorial/tools/internstudio_web_demo.py \
/root/llama3_hf_merged
结果如下:
LMDeploy 高效部署 Llama3 实践
创建环境
conda create -n lmdeploy python=3.10
conda activate lmdeploy
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia
安装lmdeploy
pip install -U lmdeploy[all]
在终端运行
实现模型轻量化
改变cache-max-entry-count参数lmdeploy chat /root/model/Meta-Llama-3-8B-Instruct/ --cache-max-entry-count 0.5
把--cache-max-entry-count
参数设置为0.01,约等于禁止KV Cache占用显存。
lmdeploy chat /root/model/Meta-Llama-3-8B-Instruct/ --cache-max-entry-count 0.01
2
)使用W4A16量化
lmdeploy lite auto_awq \
/root/model/Meta-Llama-3-8B-Instruct \
--calib-dataset 'ptb' \
--calib-samples 128 \
--calib-seqlen 1024 \
--w-bits 4 \
--w-group-size 128 \
--work-dir /root/model/Meta-Llama-3-8B-Instruct_4bit
运行:
lmdeploy chat /root/model/Meta-Llama-3-8B-Instruct_4bit --model-format awq --cache-max-entry-count 0.01
显存明显降低
3)LMDeploy服务
启动API服务器
lmdeploy serve api_server \
/root/model/Meta-Llama-3-8B-Instruct \
--model-format hf \
--quant-policy 0 \
--server-name 0.0.0.0 \
--server-port 23333 \
--tp 1
运行命令行客户端:
lmdeploy serve api_client http://localhost:23333
通过命令行窗口直接与模型对话
利用Gradio作为前端,启动网页客户端,网页客户端连接API服务器
lmdeploy serve gradio http://localhost:23333 \
--server-name 0.0.0.0 \
--server-port 6006