当前位置:AIGC资讯 > AIGC > 正文

AI绘画入门教程(非常详细)从零基础入门到精通,看完这一篇就够了

AI绘画的出现,让越来越多的人可以轻松画出美丽的插画作品。在本篇文章中,我们将会使用AI绘画软件:触站,轻松创建属于自己的作品。从零开始学AI绘画!

从零开始学AI绘画关键步骤:

第一步:下载软件

首先,我们需要下载一个非常好用的AI绘画软件。AI绘画功能也十分强大,能够帮助零基础小白快速生成精美的作品。

第二步:准备素材

在使用AI绘画软件之前,我们需要准备一些素材。如果您想要创作人物插画,可提前准备好所需要的角色形象、服饰、背景等元素。如果您想要创作风景插画,可准备好所需的城市或自然景色等元素。这些素材将成为我们创作作品的重要基础。

第三步:选择AI绘画功能

打开软件后,在页面上能够看到AI绘画选项。点击AI绘画之后,会弹出AI绘画的选择界面。在此菜单中,我们可以根据自己的需求,选择不同的AI绘画分类,例如人物、风景、卡通等。然后选择AI绘画素材。

第四步:调整参数

在选择了所需的素材后,我们需要根据实际需求调整一些参数。比如说,我们可以调整线条或色彩的明暗度,来达到更逼真、炫酷或柔和的效果。设置好参数后,点击“生成”按钮,等待片刻,AI就能帮助我们生成一张美丽的插画作品。

第五步:保存作品

在成功生成插画作品之后,我们需要保存缩小版到本地。在这个过程中,我们可以选择画质、尺寸、格式等信息。推荐选择高清晰度和较大的尺寸,让我们的作品更加生动,满足所需输出比例。

人工智能技术为画师们提供了更简单、更快捷的画画方法,使得任何人都可以轻松地创造出自己想要的插画作品。在使用AI绘画软件时,我们需要提前准备好素材,根据实际需求调整AI的参数,然后保存作品。另外,不断地学习和尝试,能够帮助我们不断优化自己的作品,成为更加优秀的艺术家。

Stable Diffusion无疑是最近最火的AI绘画工具之一,所以本期给大家带来了全新Stable Diffusion 升级版资料包(文末可获取)

01 新版本一键安装启动软件

02 AI绘画基础+速成+进阶使用教程

 AI 绘画工具的部署安装

以下主要介绍三种部署安装方式:云端部署、本地部署、本机安装,各有优缺点。当本机硬件条件支持的情况下,推荐本地部署,其它情况推荐云端方式。

1.云端部署 Stable Diffusion

通过 Google Colab 进行云端部署,推荐将成熟的 Stable Diffusion Colab 项目复制到自己的 Google 云端硬盘运行,省去配置环境麻烦。这种部署方式的优点是: 不吃本机硬件,在有限时间段内,可以免费使用 Google Colab 强大的硬件资源,通常能给到 15G 的 GPU 算力,出图速度非常快。缺点是: 免费 GPU 使用时长不固定,通常情况下一天有几个小时的使用时长,如果需要更长时间使用,可以订阅 Colab 服务

Stable Diffusion WebUl 运行界面如下,在后面的操作方法里我会介绍下 Stable Diffusion

的基础操作。

2.本地部署 Stable Diffusion

相较于 Google Colab 云端部署,本地部署 Stable Diffusion 的可扩展性更强,可自定义安装需要的模型和插件,隐私性和安全性更高,自由度也更高,而且完全免费。当然缺点是对本机硬件要求高,Windows 需要 NVIDIA 显卡,8G 以上显存,16G 以上内存。Mac 需要M1/M2 芯片才可运行。

3.本机安装 DiffusionBee

如果觉得云端部署和本地部署比较繁琐,或对使用要求没有那么高,那就试下最简单的一键安装方式。

下载 Diffusionbee 应用: diffusionbee.com/download。

优点是方便快捷,缺点是扩展能力差(可以安装大模型,无法进行插件扩展,如 ControlNet) 。

3、AI 绘画工具的操作技巧

1.Stable Diffusion 基础操作

文生图

如图所示 Stable Diffusion WebUl 的操作界面主要分为: 模型区域、功能区域、参数区域出图区域

txt2img 为文生图功能,重点参数介绍:

正向提示词: 描述图片中希望出现的内容

反向提示词: 描述图片中不希望出现的内容

Sampling method: 采样方法,推荐选择 Euler a 或 DPM++ 系列,采样速度快

Sampling steps: 迭代步数,数值越大图像质量越好,生成时间也越长,一般控制在 30-50就能出效果

Restore faces: 可以优化脸部生成

Width/Height: 生成图片的宽高,越大越消耗显存,生成时间也越长,一般方图 512x512竖图 512x768,需要更大尺寸,可以到 Extras 功能里进行等比高清放大

CFG: 提示词相关性,数值越大越相关,数值越小越不相关,一般建议 7-12 区间

Batch count/Batch size: 生成批次和每批数量,如果需要多图,可以调整下每批数量

Seed: 种子数,-1 表示随机,相同的种子数可以保持图像的一致性,如果觉得一张图的结构不错,但对风格不满意,可以将种子数固定,再调整 prompt 生成

图生图

img2img 功能可以生成与原图相似构图色彩的画像,或者指定一部分内容进行变换。可以重点使用 Inpaint 图像修补这个功能:

Resize mode: 缩放模式,Just resize 只调整图片大小,如果输入与输出长宽比例不同,图片会被拉伸。Crop and resize 裁剪与调整大小,如果输入与输出长宽比例不同,会以图片中心向四周,将比例外的部分进行裁剪。Resize and fill 调整大小与填充,如果输入与输出分辨率不同,会以图片中心向四周,将比例内多余的部分进行填充

Mask blur: 蒙版模糊度,值越大与原图边缘的过度越平滑,越小则边缘越锐利

Mask mode: 蒙版模式,Inpaint masked 只重绘涂色部分,Inpaint not masked 重绘除了涂色的部分

Masked Content: 蒙版内容,fill 用其他内容填充,original 在原来的基础上重绘

Inpaint area: 重绘区域,Whole picture 整个图像区域,Only masked 只在蒙版区域

Denoising strength: 重绘幅度,值越大越自由发挥,越小越和原图接近

ControlNet

安装完 ControlNet 后,在 txt2img 和 img2img 参数面板中均可以调用 ControlNet。操作说明:

Enable: 启用 ControlNet

Low VRAM: 低显存模式优化,建议 8G 显存以下开启

Guess mode: 猜测模式,可以不设置提示词,自动生成图片

Preprocessor: 选择预处理器主要有 OpenPose、Canny、HED、Scribble、MIsd.Seg、Normal Map、Depth

Model: ControlNet 模型,模型选择要与预处理器对应

Weight: 权重影响,使用 ControlNet 生成图片的权重占比影响

Guidance strength(T): 引导强度,值为 1时,代表每选代 1 步就会被 ControlNet引导1次

Annotator resolution: 数值越高,预处理图像越精细Canny low/high threshold: 控制最低和最高采样深度Resize mode: 图像大小模式,默认选择缩放至合适

Canvas width/height: 画布宽高

Create blank canvas: 创建空白画布

Preview annotator result: 预览注释器结果,得到一张 ControlNet 模型提取的特征图片

Hide annotator result: 隐藏预览图像窗

LORA 模型训练说明

前面提到 LORA 模型具有训练速度快,模型大小适中 (100MB 左右),配置要求低 (8G 显存),能用少量图片训练出风格效果的优势。

以下简要介绍该模型的训练方法:

第 1步:数据预处理

在Stable Diffusion WebUl 功能面板中,选择 Train 训练功能,点选 Preprocess images 预处理图像功能。在 Source directory 栏填入你要训练的图片存放目录,在 Destinationdirectory 栏填入预处理文件输出目录。width 和 height 为预处理图片的宽高,默认为512x512,建议把要训练的图片大小统一改成这个尺寸,提升处理速度。勾选 Auto focalpoint crop 自动焦点裁剪,勾选 Use deepbooru for caption 自动识别图中的元素并打上标签。点击 Preprocess 进行图片预处理。

第 2 步: 配置模型训练参数

在这里可以将模型训练放到 Google Colab 上进行,调用 Colab 的免费 15G GPU 将大大提升模型训练速度。LoRA 微调模型训练工具我推荐使用 Kohya,运行 

KohyaColab: https://colab.research.google.com/github/Linaqruf/kohyatrainer/blob/main/fast-kohya-traineripynb

配置训练参数

先在 content 目录建立 training_dir/training_data 目录,将步骤 1 中的预处理文件上传至该数据训练目录。然后配置微调模型命名和数据训练目录,在 Download Pretrained Model 栏配置需要参考的预训练模型文件。其余的参数可以根据需要调整设置。

第 3 步: 训练模型

参数配置完成后,运行程序即可进行模型训练。训练完的模型将被放到 training dir/output目录,我们下载 safetensors 文件格式的模型,存放到 stable-diffusion-webui/models/Lora 日录中即可调用该模型。由于直接从 Colab 下载速度较慢,另外断开Colab 连接后也将清空模型文件,这里建议在 Extras 中配置 huggingface 的 Write Token.将模型文件上传到 huggingface 中,再从 huggingface File 中下载,下载速度大大提升,文件也可进行备份。

2.Prompt 语法技巧

文生图模型的精髓在于 Prompt 提示词,如何写好 Prompt 将直接影响图像的生成质量

提示词结构化

Prompt 提示词可以分为 4 段式结构: 质风 + 面主体 + 面细节 + 风格参考画面画风: 主要是大模型或 LORA 模型的 Tag、正向画质词、画作类型等画面主体: 画面核心内容、主体人/事/物/景、主体特征/动作等

画面细节: 场景细节、人物细节、环境灯光、画面构图等

风格参考: 艺术风格、渲染器、Embedding Tag 等

提示词语法

提示词排序:越前面的词汇越受 AI 重视,重要事物的提示词放前面

增强/减弱: (提示词:权重数值),默认 1,大于 1 加强,低于 1 减弱。如(doctor:1.3)混合: 提示词|提示词,实现多个要素混合,如[red blue] hair 红蓝色头发混合

+ 和 AND: 用于连接短提示词,AND 两端要加空格

分步染:[提示词 A:提示词 B:数值],先按提示词 A 生成,在设定的数值后朝提示词 B 变化。如[dog:cat:30] 前 30 步画狗后面的画猫,[dog:cat:0.9] 前面 90%画狗后面 10%画猫

正向提示词: masterpiece,best quality 等画质词,用于提升画面质量

反向提示词: nsfw, bad hands, missing fingers......, 用于不想在画面中出现的内容

Emoji: 支持 emoji,如 形容表情,当 修饰手

常用提示词举例:

3.ChatGPT 辅助生成提示词

我们也可以借助 ChatGPT 帮我们生成提示词参考

给 ChatGPT 一段示例参考: /guides/using-openai-chat-gpt-to-write-stable-diffusion.prompts

根据参考生成 Prompts,再添加细节润色

4.Stable Diffusion 全中文环境配置

在实际使用中,我们还可以把 Stable Diffusion 配置成全中文环境,这将大大增加操作友好度。全中文环境包括了 Stable Diffusion WebUl 的汉化和 Prompt 支持中文输入。

Stable Diffusion WebUl 汉化

安装中文扩展插件: 点击 Extensions 选择Install from URL,输入 https://github.com/VinsonLaro/stable-diffusion-webui-chinese,点击 Install,并重启 WebUI

切换到中文模式: 在 Settings 面板中,将 User interface 中的 Localization 设置成 Chinese中文模式,重启 WebUl 即可切换到中文界面

Prompt 中文输入

下载提示词中文扩展插件: https://github.com/butaixianran/Stable-Difusion-Webui-Prompt-Translator,将项目作为 zip 文件下载,解压后放到 stable-diffusion-webui/extensions 目录中,重启 WebUl

调用百度翻译 API: 去 api.fanyi.baidu.com 申请一个免费 API Key,并将翻译服务开通。在管理控制台的开发者信息页中确认 APP ID 和密

在 Stable Diffusion WebUl 的 Prompt Translator 面板中,选择百度翻译引擎,并将申请的APPID 和 密钥填写进去,点击保存

使用: 在 Stable Diffusion WebUl 页面顶部会出现一个翻译工具栏,我们在提示词输入框中输入中文,点击工具栏中的翻译就能自动把提示词替换成英文。

 最后想说

AIGC(AI Generated Content)技术,即人工智能生成内容的技术,具有非常广阔的发展前景。随着技术的不断进步,AIGC的应用范围和影响力都将显著扩大。以下是一些关于AIGC技术发展前景的预测和展望:

1、AIGC技术将使得内容创造过程更加自动化,包括文章、报告、音乐、艺术作品等。这将极大地提高内容生产的效率,降低成本。2、在游戏、电影和虚拟现实等领域,AIGC技术将能够创造更加丰富和沉浸式的体验,推动娱乐产业的创新。3、AIGC技术可以帮助设计师和创意工作者快速生成和迭代设计理念,提高创意过程的效率。

未来,AIGC技术将持续提升,同时也将与人工智能技术深度融合,在更多领域得到广泛应用。感兴趣的小伙伴,赠送全套AIGC学习资料和安装工具,包含AI绘画、AI人工智能等前沿科技教程。

对于从来没有接触过AI绘画的同学,我已经帮你们准备了详细的学习成长路线图。可以说是最科学最系统的学习路线,大家跟着这个大的方向学习准没问题。

AIGC学习必备工具和学习步骤

工具都帮大家整理好了,安装就可直接上手

现在AI绘画还是发展初期,大家都在摸索前进。

但新事物就意味着新机会,我们普通人要做的就是抢先进场,先学会技能,这样当真正的机会来了,你才能抓得住。

如果你对AI绘画感兴趣,我可以分享我在学习过程中收集的各种教程和资料。

学完后,可以毫无问题地应对市场上绝大部分的需求。

这份AI绘画资料包整理了Stable Diffusion入门学习思维导图、Stable Diffusion安装包、120000+提示词库,800+骨骼姿势图,Stable Diffusion学习书籍手册、AI绘画视频教程、AIGC实战等等。

【Stable Diffusion安装包(含常用插件、模型)】

【AI绘画12000+提示词库】

【AI绘画800+骨骼姿势图】

【AI绘画视频合集】

还有一些已经总结好的学习笔记,可以学到不一样的思路。

实战案例

纸上得来终觉浅,要学会跟着视频一起敲,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

总结

### 探索AI绘画的魅力:新手入门全指南
#### 一、背景简介
近年来,AI技术的飞速发展为艺术创作带来了新的可能性。特别是AI绘画的兴起,让零基础的用户也能轻松创作出精美的插画作品。通过触及AI绘画工具如触站和Stable Diffusion,我们不仅能体验到与众不同的创造性,还能在传统的绘画领域中发现新的可能性。
#### 二、AI绘画入门步骤
1. **下载软件**:选择一款合适的AI绘画软件,如触站,它为初学者和大师都提供了丰富的功能和便捷的操作体验。
2. **素材准备**:根据创作主题(如人物、风景等),准备好相关的素材资料,这些将成为你绘制作品时的重要参考。
3. **选择绘画功能**:在软件中选择适合的AI绘画功能,根据需要选择人物、风景、卡通等不同分类,并选择合适的素材。
4. **参数调整**:根据个人审美和需求,调整线条粗细、色彩明暗等参数,以获得最满意的效果。
5. **保存作品**:完成绘制后,选择需要的分辨率和格式保存作品,方便后续使用或分享。
#### 三、Stable Diffusion实操要点
- **部署方式选择**:Stable Diffusion可以通过云端、本地或本机安装来获取,每一种方式都有其特点和适用场景。
- **基础操作指南**:详细指导了如何使用Stable Diffusion的txt2img、img2img等工具来生成满意的画作。
- **操作技巧**:介绍了如何使用各种选项和功能,来进一步优化生成的图像。
- **模型训练**:探讨了如何通过数据和训练来调整大模型或LORA模型来生成特定风格的画作。
#### 四、学习资料与资源
我们为初学者提供了丰富的AI绘画学习资料和资源,包括安装包、提示词库、学习笔记和实战案例等,旨在帮助大家更快地上手并不断优化作品。
#### 五、AI绘画的未来展望
AI绘画作为一种新兴的艺术形式,其发展前景十分广阔。它具有自动化、多样性和灵活性等特点,将在艺术创作中发挥越来越重要的作用。未来,随着技术的不断进步和应用的不断拓展,AI绘画将为我们带来更多的惊喜和可能。
现在,就让我们一起走进AI绘画的世界,探索创意的无限可能!

更新时间 2024-07-17