#目录#
一、ComfyUI安装及实践
(一)什么是ComfyUI
(二)ComfyUI核心模块
(三)ComfyUI图片生成流程
(四)ComfyUI的优势
(五)20分钟速通安装ComfyUI
(六)浅尝ComfyUI工作流
二、LoRA安装及实践
(一)什么是Lora微调
(二)LoRA微调的原理
(三)LoRA微调的优势
(四)LoRA微调代码分析
(五)UNet、VAE和文本编码器的协作关系
三、自学资源总计
一、ComfyUI安装及实践
(一)什么是ComfyUI
GUI 是 "Graphical User Interface"(图形用户界面)的缩写。简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。
ComfyUI 是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术,ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。这些节点可以连接起来形成一个工作流程,这样用户就可以根据需要定制自己的图像生成过程。
(二)ComfyUI核心模块
核心模块由模型加载器、提示词管理器、采样器、解码器。
模型加载器:Load Checkpoint用于加载基础的模型文件,包含了Model、CLIP、VAE三部分
CLIP模块将文本类型的输入变为模型可以理解的latent space embedding作为模型的输入
解码器:VAE模块的作用是将Latent space中的embedding解码为像素级别的图像
采样器:用于控制模型生成图像,不同的采样取值会影响最终输出图像的质量和多样性。采样器可以调节生成过程的速度和质量之间的平衡。
Stable Diffusion的基本原理
通过降噪的方式(如完全的噪声图像),将一个原本的噪声信号变为无噪声的信号(如人可以理解的图像)。其中的降噪过程涉及到多次的采样。采样的系数在KSampler中配置:
1)seed:控制噪声产生的随机种子
2)control_after_generate:控制seed在每次生成后的变化
3)steps:降噪的迭代步数,越多则信号越精准,相对的生成时间也越长
4)cfg:classifier free guidance决定了prompt对于最终生成图像的影响有多大。更高的值代表更多地展现prompt中的描述。
5)denoise: 多少内容会被噪声覆盖 sampler_name、scheduler:降噪参数。
(三)ComfyUI图片生成流程
(四)ComfyUI的优势
1)模块化和灵活性:ComfyUI 提供了一个模块化的系统,用户可以通过拖放不同的模块来构建复杂的工作流程。这种灵活性允许用户根据自己的需求自由组合和调整模型、输入、输出、和其他处理步骤。
2)可视化界面:ComfyUI 提供了直观的图形界面,使得用户能够更清晰地理解和操作复杂的 AI 模型和数据流。这对没有编程背景的用户特别有帮助,使他们能够轻松构建和管理工作流程。
3)多模型支持:ComfyUI 支持多个不同的生成模型,用户可以在同一平台上集成和切换使用不同的模型,从而实现更广泛的应用场景。
4)调试和优化:通过其可视化界面,ComfyUI 使得调试生成过程变得更简单。用户可以轻松地追踪数据流,识别并解决问题,从而优化生成结果。
5)开放和可扩展:ComfyUI 是一个开源项目,具有高度的可扩展性。开发者可以根据需要编写新的模块或插件,扩展系统功能,并根据项目需求进行定制。
6)用户友好性:尽管其功能强大,但 ComfyUI 仍然保持了用户友好性,即使对于复杂任务,也能以相对简单的方式完成,使其成为生成式 AI 工作流程管理的有力工具。
(五)20分钟速通安装ComfyUI
依旧选择使用魔搭社区提供的Notebook和免费的GPU算力体验来体验ComfyUI。
step1 :选择启动环境(大概2-3min)
step2 :输入代码进行安装
git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors_test_comfyui.git
mv kolors_test_comfyui/* ./
rm -rf kolors_test_comfyui/
mkdir -p /mnt/workspace/models/lightning_logs/version_0/checkpoints/
mv epoch=0-step=500.ckpt /mnt/workspace/models/lightning_logs/version_0/checkpoints/
step3 :进入安装文件进行安装(大概15-20min)
step4 :复制链接进行访问
当执行到最后一个节点的内容输出了一个访问的链接的时候,复制链接到浏览器中访问
(六)浅尝ComfyUI工作流
{
"last_node_id": 15,
"last_link_id": 18,
"nodes": [
{
"id": 11,
"type": "VAELoader",
"pos": [
1323,
240
],
"size": {
"0": 315,
"1": 58
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "VAE",
"type": "VAE",
"links": [
12
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "VAELoader"
},
"widgets_values": [
"sdxl.vae.safetensors"
]
},
{
"id": 10,
"type": "VAEDecode",
"pos": [
1368,
369
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 18
},
{
"name": "vae",
"type": "VAE",
"link": 12,
"slot_index": 1
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
13
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 14,
"type": "KolorsSampler",
"pos": [
1011,
371
],
"size": {
"0": 315,
"1": 222
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"link": 16
},
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"link": 17
}
],
"outputs": [
{
"name": "latent",
"type": "LATENT",
"links": [
18
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsSampler"
},
"widgets_values": [
1024,
1024,
1000102404233412,
"fixed",
25,
5,
"EulerDiscreteScheduler"
]
},
{
"id": 6,
"type": "DownloadAndLoadKolorsModel",
"pos": [
201,
368
],
"size": {
"0": 315,
"1": 82
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"links": [
16
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadKolorsModel"
},
"widgets_values": [
"Kwai-Kolors/Kolors",
"fp16"
]
},
{
"id": 3,
"type": "PreviewImage",
"pos": [
1366,
468
],
"size": [
535.4001724243165,
562.2001106262207
],
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 13
}
],
"properties": {
"Node name for S&R": "PreviewImage"
}
},
{
"id": 12,
"type": "KolorsTextEncode",
"pos": [
519,
529
],
"size": [
457.2893696934723,
225.28656056301645
],
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"link": 14,
"slot_index": 0
}
],
"outputs": [
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"links": [
17
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsTextEncode"
},
"widgets_values": [
"cinematic photograph of an astronaut riding a horse in space |\nillustration of a cat wearing a top hat and a scarf |\nphotograph of a goldfish in a bowl |\nanime screencap of a red haired girl",
"",
1
]
},
{
"id": 15,
"type": "Note",
"pos": [
200,
636
],
"size": [
273.5273818969726,
149.55464588512064
],
"flags": {},
"order": 2,
"mode": 0,
"properties": {
"text": ""
},
"widgets_values": [
"Text encoding takes the most VRAM, quantization can reduce that a lot.\n\nApproximate values I have observed:\nfp16 - 12 GB\nquant8 - 8-9 GB\nquant4 - 4-5 GB\n\nquant4 reduces the quality quite a bit, 8 seems fine"
],
"color": "#432",
"bgcolor": "#653"
},
{
"id": 13,
"type": "DownloadAndLoadChatGLM3",
"pos": [
206,
522
],
"size": [
274.5334274291992,
58
],
"flags": {},
"order": 3,
"mode": 0,
"outputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"links": [
14
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadChatGLM3"
},
"widgets_values": [
"fp16"
]
}
],
"links": [
[
12,
11,
0,
10,
1,
"VAE"
],
[
13,
10,
0,
3,
0,
"IMAGE"
],
[
14,
13,
0,
12,
0,
"CHATGLM3MODEL"
],
[
16,
6,
0,
14,
0,
"KOLORSMODEL"
],
[
17,
12,
0,
14,
1,
"KOLORS_EMBEDS"
],
[
18,
14,
0,
10,
0,
"LATENT"
]
],
"groups": [],
"config": {},
"extra": {
"ds": {
"scale": 1.1,
"offset": {
"0": -114.73954010009766,
"1": -139.79705810546875
}
}
},
"version": 0.4
}
下面是我自己调整关键词和数据后生成的一些AI生图作品
二、LoRA安装及实践
(一)什么是Lora微调
LoRA (Low-Rank Adaptation) 微调是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。这对于推动大规模预训练模型的实际应用至关重要。
(二)LoRA微调原理
LoRA通过在预训练模型的关键层中添加低秩矩阵来实现。这些低秩矩阵通常被设计成具有较低维度的参数空间,这样它们就可以在不改变模型整体结构的情况下进行微调。在训练过程中,只有这些新增的低秩矩阵被更新,而原始模型的大部分权重保持不变。
(三)LoRA微调的优势
1)快速适应新任务:在特定领域有少量标注数据
的情况下,也可以有效地对模型进行个性化调整
,可以迅速适应新的领域或特定任务。
2)保持泛化能力:LoRA通过微调模型的一部分,有助于保持模型在未见过的数据上的泛化能力
,同时还能学习到特定任务的知识。
3)资源效率:LoRA旨在通过仅微调模型的部分权重,而不是整个模型,从而减少所需的计算资源和存储空间。
(四)LoRA微调代码分析
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
--lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
--lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
--dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
--output_path ./models \ # 指定输出路径,用于保存模型
--max_epochs 1 \ # 设置最大训练轮数为 1
--center_crop \ # 启用中心裁剪,这通常用于图像预处理
--use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
--precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练
(五)UNet、VAE和文本编码器的协作关系
UNet:负责根据输入的噪声和文本条件生成图像。在Stable Diffusion模型中,UNet接收由VAE编码器产生的噪声和文本编码器转换的文本向量作为输入,并预测去噪后的噪声,从而生成与文本描述相符的图像
VAE:生成模型,用于将输入数据映射到潜在空间,并从中采样以生成新图像。在Stable Diffusion中,VAE编码器首先生成带有噪声的潜在表示,这些表示随后与文本条件一起输入到UNet中
文本编码器:将文本输入转换为模型可以理解的向量表示。在Stable Diffusion模型中,文本编码器使用CLIP模型将文本提示转换为向量,这些向量与VAE生成的噪声一起输入到UNet中,指导图像的生成过程
三、自学资源总结
(一)公开的数据平台
1 )ImageNet:包含数百万张图片,广泛用于分类任务,也可以用于生成任务。
2 )Open Images:由Google维护,包含数千万张带有标签的图片。
3 )Flickr:特别是Flickr30kK和Flickr8K数据集,常用于图像描述任务。
4 )CelebA:专注于人脸图像的数据集。
5 )LSUN (Large-scale Scene Understanding):包含各种场景类别的大规模数据集。
(二)自学平台
1 )在魔搭使用ComfyUI,玩转AIGC!
2 )ComfyUI的官方地址
3 )ComfyUI官方示范
4 )别人的基础工作流示范
5 )工作流分享网站
6 )推荐一个比较好的comfyui的github仓库网站
总结
#目录#
一、ComfyUI安装及实践
(一)什么是ComfyUI
(二)ComfyUI核心模块
(三)ComfyUI图片生成流程
(四)ComfyUI的优势
(五)20分钟速通安装ComfyUI
(六)浅尝ComfyUI工作流
二、LoRA安装及实践
(一)什么是Lora微调
(二)LoRA微调的原理
(三)LoRA微调的优势
(四)LoRA微调代码分析
(五)UNet、VAE和文本编码器的协作关系
三、自学资源总计
一、ComfyUI安装及实践
(一)什么是ComfyUI
GUI 是 "Graphical User Interface"(图形用户界面)的缩写。简单来说,GUI 就是你在电脑屏幕上看到的那种有图标、按钮和菜单的交互方式。
ComfyUI 是GUI的一种,是基于节点工作的用户界面,主要用于操作图像的生成技术,ComfyUI 的特别之处在于它采用了一种模块化的设计,把图像生成的过程分解成了许多小的步骤,每个步骤都是一个节点。这些节点可以连接起来形成一个工作流程,这样用户就可以根据需要定制自己的图像生成过程。
(二)ComfyUI核心模块
核心模块由模型加载器、提示词管理器、采样器、解码器。
模型加载器:Load Checkpoint用于加载基础的模型文件,包含了Model、CLIP、VAE三部分
CLIP模块将文本类型的输入变为模型可以理解的latent space embedding作为模型的输入
解码器:VAE模块的作用是将Latent space中的embedding解码为像素级别的图像
采样器:用于控制模型生成图像,不同的采样取值会影响最终输出图像的质量和多样性。采样器可以调节生成过程的速度和质量之间的平衡。
Stable Diffusion的基本原理
通过降噪的方式(如完全的噪声图像),将一个原本的噪声信号变为无噪声的信号(如人可以理解的图像)。其中的降噪过程涉及到多次的采样。采样的系数在KSampler中配置:
1)seed:控制噪声产生的随机种子
2)control_after_generate:控制seed在每次生成后的变化
3)steps:降噪的迭代步数,越多则信号越精准,相对的生成时间也越长
4)cfg:classifier free guidance决定了prompt对于最终生成图像的影响有多大。更高的值代表更多地展现prompt中的描述。
5)denoise: 多少内容会被噪声覆盖 sampler_name、scheduler:降噪参数。
(三)ComfyUI图片生成流程
(四)ComfyUI的优势
1)模块化和灵活性:ComfyUI 提供了一个模块化的系统,用户可以通过拖放不同的模块来构建复杂的工作流程。这种灵活性允许用户根据自己的需求自由组合和调整模型、输入、输出、和其他处理步骤。
2)可视化界面:ComfyUI 提供了直观的图形界面,使得用户能够更清晰地理解和操作复杂的 AI 模型和数据流。这对没有编程背景的用户特别有帮助,使他们能够轻松构建和管理工作流程。
3)多模型支持:ComfyUI 支持多个不同的生成模型,用户可以在同一平台上集成和切换使用不同的模型,从而实现更广泛的应用场景。
4)调试和优化:通过其可视化界面,ComfyUI 使得调试生成过程变得更简单。用户可以轻松地追踪数据流,识别并解决问题,从而优化生成结果。
5)开放和可扩展:ComfyUI 是一个开源项目,具有高度的可扩展性。开发者可以根据需要编写新的模块或插件,扩展系统功能,并根据项目需求进行定制。
6)用户友好性:尽管其功能强大,但 ComfyUI 仍然保持了用户友好性,即使对于复杂任务,也能以相对简单的方式完成,使其成为生成式 AI 工作流程管理的有力工具。
(五)20分钟速通安装ComfyUI
依旧选择使用魔搭社区提供的Notebook和免费的GPU算力体验来体验ComfyUI。
step1 :选择启动环境(大概2-3min)
step2 :输入代码进行安装
git lfs install
git clone https://www.modelscope.cn/datasets/maochase/kolors_test_comfyui.git
mv kolors_test_comfyui/* ./
rm -rf kolors_test_comfyui/
mkdir -p /mnt/workspace/models/lightning_logs/version_0/checkpoints/
mv epoch=0-step=500.ckpt /mnt/workspace/models/lightning_logs/version_0/checkpoints/
step3 :进入安装文件进行安装(大概15-20min)
step4 :复制链接进行访问
当执行到最后一个节点的内容输出了一个访问的链接的时候,复制链接到浏览器中访问
(六)浅尝ComfyUI工作流
{
"last_node_id": 15,
"last_link_id": 18,
"nodes": [
{
"id": 11,
"type": "VAELoader",
"pos": [
1323,
240
],
"size": {
"0": 315,
"1": 58
},
"flags": {},
"order": 0,
"mode": 0,
"outputs": [
{
"name": "VAE",
"type": "VAE",
"links": [
12
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "VAELoader"
},
"widgets_values": [
"sdxl.vae.safetensors"
]
},
{
"id": 10,
"type": "VAEDecode",
"pos": [
1368,
369
],
"size": {
"0": 210,
"1": 46
},
"flags": {},
"order": 6,
"mode": 0,
"inputs": [
{
"name": "samples",
"type": "LATENT",
"link": 18
},
{
"name": "vae",
"type": "VAE",
"link": 12,
"slot_index": 1
}
],
"outputs": [
{
"name": "IMAGE",
"type": "IMAGE",
"links": [
13
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "VAEDecode"
}
},
{
"id": 14,
"type": "KolorsSampler",
"pos": [
1011,
371
],
"size": {
"0": 315,
"1": 222
},
"flags": {},
"order": 5,
"mode": 0,
"inputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"link": 16
},
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"link": 17
}
],
"outputs": [
{
"name": "latent",
"type": "LATENT",
"links": [
18
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsSampler"
},
"widgets_values": [
1024,
1024,
1000102404233412,
"fixed",
25,
5,
"EulerDiscreteScheduler"
]
},
{
"id": 6,
"type": "DownloadAndLoadKolorsModel",
"pos": [
201,
368
],
"size": {
"0": 315,
"1": 82
},
"flags": {},
"order": 1,
"mode": 0,
"outputs": [
{
"name": "kolors_model",
"type": "KOLORSMODEL",
"links": [
16
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadKolorsModel"
},
"widgets_values": [
"Kwai-Kolors/Kolors",
"fp16"
]
},
{
"id": 3,
"type": "PreviewImage",
"pos": [
1366,
468
],
"size": [
535.4001724243165,
562.2001106262207
],
"flags": {},
"order": 7,
"mode": 0,
"inputs": [
{
"name": "images",
"type": "IMAGE",
"link": 13
}
],
"properties": {
"Node name for S&R": "PreviewImage"
}
},
{
"id": 12,
"type": "KolorsTextEncode",
"pos": [
519,
529
],
"size": [
457.2893696934723,
225.28656056301645
],
"flags": {},
"order": 4,
"mode": 0,
"inputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"link": 14,
"slot_index": 0
}
],
"outputs": [
{
"name": "kolors_embeds",
"type": "KOLORS_EMBEDS",
"links": [
17
],
"shape": 3,
"slot_index": 0
}
],
"properties": {
"Node name for S&R": "KolorsTextEncode"
},
"widgets_values": [
"cinematic photograph of an astronaut riding a horse in space |\nillustration of a cat wearing a top hat and a scarf |\nphotograph of a goldfish in a bowl |\nanime screencap of a red haired girl",
"",
1
]
},
{
"id": 15,
"type": "Note",
"pos": [
200,
636
],
"size": [
273.5273818969726,
149.55464588512064
],
"flags": {},
"order": 2,
"mode": 0,
"properties": {
"text": ""
},
"widgets_values": [
"Text encoding takes the most VRAM, quantization can reduce that a lot.\n\nApproximate values I have observed:\nfp16 - 12 GB\nquant8 - 8-9 GB\nquant4 - 4-5 GB\n\nquant4 reduces the quality quite a bit, 8 seems fine"
],
"color": "#432",
"bgcolor": "#653"
},
{
"id": 13,
"type": "DownloadAndLoadChatGLM3",
"pos": [
206,
522
],
"size": [
274.5334274291992,
58
],
"flags": {},
"order": 3,
"mode": 0,
"outputs": [
{
"name": "chatglm3_model",
"type": "CHATGLM3MODEL",
"links": [
14
],
"shape": 3
}
],
"properties": {
"Node name for S&R": "DownloadAndLoadChatGLM3"
},
"widgets_values": [
"fp16"
]
}
],
"links": [
[
12,
11,
0,
10,
1,
"VAE"
],
[
13,
10,
0,
3,
0,
"IMAGE"
],
[
14,
13,
0,
12,
0,
"CHATGLM3MODEL"
],
[
16,
6,
0,
14,
0,
"KOLORSMODEL"
],
[
17,
12,
0,
14,
1,
"KOLORS_EMBEDS"
],
[
18,
14,
0,
10,
0,
"LATENT"
]
],
"groups": [],
"config": {},
"extra": {
"ds": {
"scale": 1.1,
"offset": {
"0": -114.73954010009766,
"1": -139.79705810546875
}
}
},
"version": 0.4
}
下面是我自己调整关键词和数据后生成的一些AI生图作品
二、LoRA安装及实践
(一)什么是Lora微调
LoRA (Low-Rank Adaptation) 微调是一种用于在预训练模型上进行高效微调的技术。它可以通过高效且灵活的方式实现模型的个性化调整,使其能够适应特定的任务或领域,同时保持良好的泛化能力和较低的资源消耗。这对于推动大规模预训练模型的实际应用至关重要。
(二)LoRA微调原理
LoRA通过在预训练模型的关键层中添加低秩矩阵来实现。这些低秩矩阵通常被设计成具有较低维度的参数空间,这样它们就可以在不改变模型整体结构的情况下进行微调。在训练过程中,只有这些新增的低秩矩阵被更新,而原始模型的大部分权重保持不变。
(三)LoRA微调的优势
1)快速适应新任务:在特定领域有少量标注数据
的情况下,也可以有效地对模型进行个性化调整
,可以迅速适应新的领域或特定任务。
2)保持泛化能力:LoRA通过微调模型的一部分,有助于保持模型在未见过的数据上的泛化能力
,同时还能学习到特定任务的知识。
3)资源效率:LoRA旨在通过仅微调模型的部分权重,而不是整个模型,从而减少所需的计算资源和存储空间。
(四)LoRA微调代码分析
import os
cmd = """
python DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py \ # 选择使用可图的Lora训练脚本DiffSynth-Studio/examples/train/kolors/train_kolors_lora.py
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \ # 选择unet模型
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \ # 选择text_encoder
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \ # 选择vae模型
--lora_rank 16 \ # lora_rank 16 表示在权衡模型表达能力和训练效率时,选择了使用 16 作为秩,适合在不显著降低模型性能的前提下,通过 LoRA 减少计算和内存的需求
--lora_alpha 4.0 \ # 设置 LoRA 的 alpha 值,影响调整的强度
--dataset_path data/lora_dataset_processed \ # 指定数据集路径,用于训练模型
--output_path ./models \ # 指定输出路径,用于保存模型
--max_epochs 1 \ # 设置最大训练轮数为 1
--center_crop \ # 启用中心裁剪,这通常用于图像预处理
--use_gradient_checkpointing \ # 启用梯度检查点技术,以节省内存
--precision "16-mixed" # 指定训练时的精度为混合 16 位精度(half precision),这可以加速训练并减少显存使用
""".strip()
os.system(cmd) # 执行可图Lora训练
(五)UNet、VAE和文本编码器的协作关系
UNet:负责根据输入的噪声和文本条件生成图像。在Stable Diffusion模型中,UNet接收由VAE编码器产生的噪声和文本编码器转换的文本向量作为输入,并预测去噪后的噪声,从而生成与文本描述相符的图像
VAE:生成模型,用于将输入数据映射到潜在空间,并从中采样以生成新图像。在Stable Diffusion中,VAE编码器首先生成带有噪声的潜在表示,这些表示随后与文本条件一起输入到UNet中
文本编码器:将文本输入转换为模型可以理解的向量表示。在Stable Diffusion模型中,文本编码器使用CLIP模型将文本提示转换为向量,这些向量与VAE生成的噪声一起输入到UNet中,指导图像的生成过程
三、自学资源总结
(一)公开的数据平台
1 )ImageNet:包含数百万张图片,广泛用于分类任务,也可以用于生成任务。
2 )Open Images:由Google维护,包含数千万张带有标签的图片。
3 )Flickr:特别是Flickr30kK和Flickr8K数据集,常用于图像描述任务。
4 )CelebA:专注于人脸图像的数据集。
5 )LSUN (Large-scale Scene Understanding):包含各种场景类别的大规模数据集。
(二)自学平台
1 )在魔搭使用ComfyUI,玩转AIGC!
2 )ComfyUI的官方地址
3 )ComfyUI官方示范
4 )别人的基础工作流示范
5 )工作流分享网站
6 )推荐一个比较好的comfyui的github仓库网站