文章目录
Stable Diffusion安装 AnimateDiff插件适配 sdxl模型适配 Stable Diffusion使用 插件安装 界面设置 基础文生图 加入lora的文生图Stable Diffusion安装
我的情况比较特殊,显卡版本太老,最高也就支持cuda10.2,因此只能安装pytorch1.12.1,并且无法安装xformers。
在安装好虚拟环境和对应pytorch版本后,按照github教程安装stable diffusion webui即可,在webui.sh
中将use_venv=1 (默认) 修改为use_venv=0,以在当前激活的虚拟环境中运行webui,然后执行bash webus.sh
安装相关依赖。
针对显卡使用情况,可在webui-user.sh
中设置可见显卡export CUDA_VISIBLE_DEVICES=0,1,2
,并在执行webui.py时在命令行中通过--device-id=1
指定具体的使用设备。
为了使用最新的模型和插件,需要做出以下适配:
AnimateDiff插件适配
该插件的原理是在调用和完成时分别向原始模型中注入(inject)和删除(restore)时间步模块从而生成连续变化的GIF,由于整体版本过老,直接执行该插件会报没有insert和pop方法的错误,因此需要在animatediff_mm.py
文件中手动实现这两个函数,需要注意insert和pop的操作和通常理解不一样:
def inject(self, sd_model, model_name="mm_sd_v15.ckpt"):
unet = sd_model.model.diffusion_model
self._load(model_name)
self.gn32_original_forward = GroupNorm32.forward
gn32_original_forward = self.gn32_original_forward
# self.tes_original_forward = TimestepEmbedSequential.forward
# def mm_tes_forward(self, x, emb, context=None):
# for layer in self:
# if isinstance(layer, TimestepBlock):
# x = layer(x, emb)
# elif isinstance(layer, (SpatialTransformer, VanillaTemporalModule)):
# x = layer(x, context)
# else:
# x = layer(x)
# return x
# TimestepEmbedSequential.forward = mm_tes_forward
if self.mm.using_v2:
logger.info(f"Injecting motion module {model_name} into SD1.5 UNet middle block.")
# unet.middle_block.insert(-1, self.mm.mid_block.motion_modules[0])
# unet.middle_block.add_module('new_module', self.mm.mid_block.motion_modules[0])
# unet.middle_block.appendself.mm.mid_block.motion_modules[0])
unet.middle_block = unet.middle_block[0:-1].append(self.mm.mid_block.motion_modules[0]).append(unet.middle_block[-1])
# n = len(unet.middle_block._modules)
# index = -1
# if index < 0:
# index += n
# for i in range(n, index, -1):
# unet.middle_block._modules[str(i)] = unet.middle_block._modules[str(i - 1)]
# unet.middle_block._modules[str(index)] = unet.middle_block
else:
logger.info(f"Hacking GroupNorm32 forward function.")
def groupnorm32_mm_forward(self, x):
x = rearrange(x, "(b f) c h w -> b c f h w", b=2)
x = gn32_original_forward(self, x)
x = rearrange(x, "b c f h w -> (b f) c h w", b=2)
return x
GroupNorm32.forward = groupnorm32_mm_forward
logger.info(f"Injecting motion module {model_name} into SD1.5 UNet input blocks.")
for mm_idx, unet_idx in enumerate([1, 2, 4, 5, 7, 8, 10, 11]):
mm_idx0, mm_idx1 = mm_idx // 2, mm_idx % 2
unet.input_blocks[unet_idx].append(
self.mm.down_blocks[mm_idx0].motion_modules[mm_idx1]
)
logger.info(f"Injecting motion module {model_name} into SD1.5 UNet output blocks.")
for unet_idx in range(12):
mm_idx0, mm_idx1 = unet_idx // 3, unet_idx % 3
if unet_idx % 3 == 2 and unet_idx != 11:
# unet.output_blocks[unet_idx].insert(
# -1, self.mm.up_blocks[mm_idx0].motion_modules[mm_idx1]
# )
# unet.output_blocks[unet_idx].add_module('new_module', self.mm.up_blocks[mm_idx0].motion_modules[mm_idx1])
# unet.output_blocks[unet_idx].append(self.mm.up_blocks[mm_idx0].motion_modules[mm_idx1])
unet.output_blocks[unet_idx] = unet.output_blocks[unet_idx][0:-1].append(self.mm.up_blocks[mm_idx0].motion_modules[mm_idx1]).append(unet.output_blocks[unet_idx][-1])
else:
unet.output_blocks[unet_idx].append(
self.mm.up_blocks[mm_idx0].motion_modules[mm_idx1]
)
self._set_ddim_alpha(sd_model)
self._set_layer_mapping(sd_model)
logger.info(f"Injection finished.")
def restore(self, sd_model):
self._restore_ddim_alpha(sd_model)
unet = sd_model.model.diffusion_model
logger.info(f"Removing motion module from SD1.5 UNet input blocks.")
for unet_idx in [1, 2, 4, 5, 7, 8, 10, 11]:
# unet.input_blocks[unet_idx].pop(-1)
unet.input_blocks[unet_idx] = unet.input_blocks[unet_idx][:-1]
logger.info(f"Removing motion module from SD1.5 UNet output blocks.")
for unet_idx in range(12):
if unet_idx % 3 == 2 and unet_idx != 11:
# unet.output_blocks[unet_idx].pop(-2)
unet.output_blocks[unet_idx] = unet.output_blocks[unet_idx][:-2].append(unet.output_blocks[unet_idx][-1])
else:
# unet.output_blocks[unet_idx].pop(-1)
unet.output_blocks[unet_idx] = unet.output_blocks[unet_idx][:-1]
if self.mm.using_v2:
logger.info(f"Removing motion module from SD1.5 UNet middle block.")
# unet.middle_block.pop(-2)
unet.middle_block = unet.middle_block[:-2].append(unet.middle_block[-1])
else:
logger.info(f"Restoring GroupNorm32 forward function.")
GroupNorm32.forward = self.gn32_original_forward
# TimestepEmbedSequential.forward = self.tes_original_forward
logger.info(f"Removal finished.")
if shared.cmd_opts.lowvram:
self.unload()
sdxl模型适配
在选择sdxl模型时,会收到如下报错:
AssertionError: We do not support vanilla attention in 1.12.1+cu102 anymore, as it is too expensive. Please install xformers via e.g. 'pip install xformers==0.0.16'
然后就会自动下载模型,但由于hugging face的连接问题,会报这种错误:
requests.exceptions.ConnectTimeout: (MaxRetryError("HTTPSConnectionPool(host='huggingface.co', port=443): Max retries exceeded with url: /laion/CLIP-ViT-bigG-14-laion2B-39B-b160k/resolve/main/open_clip_pytorch_model.bin (Caused by ConnectTimeoutError(<urllib3.connection.HTTPSConnection object at 0x7fc89a4438b0>, 'Connection to huggingface.co timed out. (connect timeout=10)'))"), '(Request ID: 9f90780e-6ae0-4531-83df-2f5052c4a1a3)')
这时就需要把所有下不了的模型下载到本地,然后把代码里的version
由模型名称改成模型路径,例如将repositories/generative-models/configs/inference/sd_xl_base.yaml
中的version: laion2b_s39b_b160k
改成本地的/models/hugfac/CLIP-ViT-bigG-14-laion2B-39B-b160k/open_clip_pytorch_model.bin
但到这里还没完,为了能正常运行,需要在代码里把对于xformer的检查相关Assert部分注释掉,并重新实现repositories/generative-models/sgm/modules/diffusionmodules/model.py
中的attention
函数:
def attention(self, h_: torch.Tensor) -> torch.Tensor:
h_ = self.norm(h_)
q = self.q(h_)
k = self.k(h_)
v = self.v(h_)
# compute attention
B, C, H, W = q.shape
q, k, v = map(lambda x: rearrange(x, "b c h w -> b (h w) c"), (q, k, v))
q, k, v = map(
lambda t: t.unsqueeze(3)
.reshape(B, t.shape[1], 1, C)
.permute(0, 2, 1, 3)
.reshape(B * 1, t.shape[1], C)
.contiguous(),
(q, k, v),
)
# out = xformers.ops.memory_efficient_attention(
# q, k, v, attn_bias=None, op=self.attention_op
# )
k = k / (k.shape[-1] ** 0.5)
attn = torch.matmul(q, k.transpose(-2, -1))
attn = torch.softmax(attn, dim=-1)
out = torch.matmul(attn, v)
out = (
out.unsqueeze(0)
.reshape(B, 1, out.shape[1], C)
.permute(0, 2, 1, 3)
.reshape(B, out.shape[1], C)
)
return rearrange(out, "b (h w) c -> b c h w", b=B, h=H, w=W, c=C)
Stable Diffusion使用
插件安装
点击扩展→可用→简单粗暴按星数排序:
如果github无法访问,可以复制链接后前面加上https://ghproxy.com/
从网址安装:
最终安装的部分插件如下,注意需要手动把插件模型下载到对应路径下才能使用:
界面设置
在设置→用户界面中对快捷设置和UItab做修改:
点击右上角设置kitchen插件主题:
最终效果如下:
基础文生图
首先在模型左侧选择Stable Diffusion模型及其对应VAE,然后输入正向和反向提示词,在下面点击生成相关设置如采样方法、采样迭代次数和宽高等。
需要注意的几点:
Clip跳过层设置:CLIP 是用来给提示词编码的神经网络,默认是使用模型最后一层的输出作为提示词的嵌入表示,将其设为2就可以使用模型倒数第二层的输出作为嵌入表示。增加这一参数时,可以更好地保留提示中的信息,生成与提示更匹配的图片,但设置的值过大也会影响编码的准确性。该参数仅适用于使用CLIP的模型,即1.x模型及其派生物。2.0模型及其派生物不与CLIP交互,因为它们使用OpenCLIP。 将交叉关注层向上转型到float32设置:遇到NAN报错或者花屏图片时可以试试。 图片大小设置:对于SDXL模型,为了保证生成质量图片至少为1024x1024 16:9(电影摄影)1820x1024 3:2(专业摄影)1536x1024 4:3(普通图片)1365x1024 采样方法:对SDXL 1.0来说,建议使用任何DPM++采样器,特别是带有Karras采样器的DPM++。比如DPM++ 2M Karras或DPM++ 2S a Karras生成示例如下:
加入lora的文生图
lora是一类对模型进行微调的方法,是一系列参数量较小的模型,在与原始模型结合后,可以对生成图片做特定修饰,可以理解为化妆技术。
lora的使用方法是将模型下载到models/Lora
文件夹下,注意最好分文件夹存放,方便调用和管理:
对应的前端界面如下:
使用方法很简单,在输入提示词后直接点击lora模型,就会自动添加到输入末尾: