探探前沿:了解一下 AI生图技术 的能力&局限
今天我们的任务是对baseline的代码有一个更加细致的理解,然后我们会学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。授人以鱼不如授人以渔,你可以从中学大模型的提问技巧来实现快速学习,学会如何制作一个话剧连环画。
‘自其不变者而观之,则物与我皆无尽也’,拥抱AI、学习AI、运用AI解决各种变化的问题,一起加油!!!
1.为什么要了解AI生图前沿?
有些同学可能对于AI可以生成什么样的图片、AI生图有哪些风险和挑战并不是很了解。
在这里我们想先给大家再补充一点背景知识,让大家了解其中的风险和难点。
另外,也将从技术视角拆解AI生图相关工具,让大家更清楚自己的预期场景,能否使用AI生图解决,或部分解决,以及追踪更多AI生图前沿的信息。
AIGC(AI-Generated Content)是通过人工智能技术自动生成内容的生产方式,很早就有专家指出,AIGC将是未来人工智能的重点方向,也将改造相关行业和领域生产内容的方式。
AI生图则是其中最早被大众所熟知并广泛被认可的AIGC领域。AI生成图片的快速发展,使诸多领域措手不及,如:摄影、美术等艺术领域正在面临前所未有的颠覆。我们所认为的“有图有真相”,甚至理解的现实也将不断被挑战...
插入一段小常识,提醒大家警惕Deepfake技术
Deepfake是一种使用人工智能技术生成的伪造媒体,特别是视频和音频,它们看起来或听起来非常真实,但实际上是由计算机生成的。这种技术通常涉及到深度学习算法,特别是生成对抗网络(GANs),它们能够学习真实数据的特征,并生成新的、逼真的数据。
Deepfake技术虽然在多个领域展现出其创新潜力,但其滥用也带来了一系列严重的危害。在政治领域,Deepfake可能被用来制造假新闻或操纵舆论,影响选举结果和政治稳定。经济上,它可能破坏企业形象,引发市场恐慌,甚至操纵股市。法律体系也面临挑战,因为伪造的证据可能误导司法判断。此外,深度伪造技术还可能加剧身份盗窃的风险,成为恐怖分子的新工具,煽动暴力和社会动荡,威胁国家安全。
由此衍生的Deepfake攻防技术,我们在今年夏令营的第二期中,有组织学习活动,具体可以查看:从零入门CV图像竞赛(Deepfake攻防)
对所有人来说,定期关注AI生图的最新能力情况都十分重要:
对于普通人来说,可以避免被常见的AI生图场景欺骗,偶尔也可以通过相关工具绘图
对于创作者来说,通过AI生图的工具可以提效,快速制作自己所需要的内容
对于技术人来说,了解AI生图的能力的玩法,可以更好地针对自己的业务进行开发和使用,甚至攻克难题开发更实用的工具。
2.再来从工具视角回顾一下AI生图的历史
最早的AI生图可追溯到20世纪70年代,当时由艺术家哈罗德·科恩(Harold Cohen)发明AARON,可通过机械臂输出作画。
现代的AI生图模型大多基于深度神经网络基础上训练,最早可追溯到2012年吴恩达训练出的能生成“猫脸”的模型。
它使用卷积神经网络(CNN)训练,证明了深度学习模型能够学习到图像的复杂特征。
2015年,谷歌推出了“深梦”(Deep Dream)图像生成工具,类似一个高级滤镜,可以基于给定的图片生成梦幻版图片。
2021 年 1 月 OpenAI 推出DALL-E模型(一个深度学习算法模型,是GPT-3 语言处理模型的一个衍生版本),能直接从文本提示“按需创造”风格多样的图形设计。
在当时,就已经被一些媒体评价为:“ 秒杀50%的设计行业打工人应该是没有问题的,而且是质量和速度双重意义上的“秒杀” ”。
一般来说,AI生图模型属于多模态机器学习模型,通过海量的图库和文本描述的深度神经网络学习,最终的目标是可以根据输入的指示(不管是文本还是图片还是任何)生成符合语义的图片。
插入一个小八卦
AI生图在很长一段时间很难被人们所广泛接纳,一方面是生成的内容没有可用的生产场景,还有很大程度可能是由于“恐怖谷效应”——
其核心观点是:随着仿真物(如机器人、玩偶等)模拟真实性程度的变化,人们对其亲和力也会产生变化,一般规律是亲和力随着仿真程度增高而增高,但当仿真程度达到一个临界点时,人的亲和反应会陡然跌入谷底,突然产生排斥、恐惧、困惑等负面心理。
通过学习大量画家的作品,AI生图模型 往往可以照猫画虎绘制出类似的画作,在2022年8月,AI生图真正走进了大众的视野,让各个领域无法忽视。
当时让AI生图破圈的是AI绘画作品《太空歌剧院》,该作品在美国科罗拉多州举办的新兴数字艺术家竞赛中获得了比赛“数字艺术/数字修饰照片”类别一等奖,引起了当时“艺术家们 Not Happy”的社会舆论。
3.AI生图的难点和挑战有哪些?
往前一年,AI绘画还不会画“手”。也因为当时这个情况,产生了很多解决这个问题的相关技术,如:给图片里的人手打上标记,像把手掌、拇指、食指啥的,都给清楚地标出来;
我们现在还可以经常在各类自媒体的文章中看到“AI翻车”的案例,那些往往也是需要解决的难点,某些“翻车”现象,也许在业界已有相关的解决方案。
通俗来说,AI生图模型获得图片生成能力主要是通过 学习 图片描述 以及 图片特征,尝试将这两者进行一一对应,存储在自己的记忆里。
在我们需要的时候,通过输入的文字,复现出来对应的图片特征,从而生成了我们需要的图片。
关于AI是否真正理解了图片背后所代表的世界的特征,是否理解了图片的含义,这个一直是科研界和产业界存在争议的话题,我们唯一可以确定的是
由于每个模型用于训练的数据是有限的且不一定相同的,它们能匹配的描述和特征也是有限的,所以在风格、具体事物上,不同的模型会有很大的生成差异,且可能存在诸多与现实不符的情况。
而这些问题,就是业界和科研界持续在想办法解决的问题。
目前已经应用AI生图的行业主要有电商、游戏、设计等,大家感兴趣可以去查看相关研报,下图是在微信公众号搜索的结果
在大部分生图场景下,我们可能经常会觉得图片存在“AI味”,这很长一段时间也是科研界和相关从业人员非常头大的问题。
*AI味:AI生成的图片和实际生活场景/艺术家创作的绘画/摄影/三维作品 相比,存在强烈的违和感,或是细节处理,或是画面逻辑性存在问题,一言就能被看出是“AI出品”
目前大部分的模型,已经具备了去除 “AI味” 的能力,且可能存在容易误导他人的情况,这时候我们想辨别可能需要非常仔细地——
观察图片的细节。仔细检查人物的面部特征,尤其是眼睛和嘴巴
检查光线和阴影。分析图片中的光源是否一致,阴影的方向是否与光源相符,是否存在不自然的光线或阴影
分析像素。放大图片,寻找是否有模糊或像素化的部分。
注意背景。检查背景中是否有不协调的元素,比如物体边缘是否平滑,背景中是否有不自然的重复模式。
而这些细节上的AI特性,也许就是我们在某些特定场景下需要解决的挑战。
Part1:磨刀准备一一认识通义千问(重点来了!!!)
学习说明:
我们计划使用通义千问大语言模型来告诉大家如何借助AI智能助手帮我们阅读代码。工欲善其事必先利其器,现在让我们请出今天的主角,通义千问(点击直达)。
?:注意
使用大语言模型比较频繁的学习者可跳过这部分内容。
也可以自行选择其他的大语言模型使用,学习过程中不做限制。
通义系列产品也有文生图的工具:通义万相,大家感兴趣可以自己体验。
1.通义千问的自我介绍
首先,我们来看下它的自我介绍。通义千问是具有信息查询、语言理解、文本创作等多能力的AI助手。我们可以看到,编程与技术支持能力是它的强项之一。
接下来我们把场景聚焦到编程与技术支持
这个方向,让他详细介绍下自己可以如何帮助大家编程。
2.使用操作指南
官方链接:https://tongyi.aliyun.com/qianwen/
step1 注册账号
step2 通义主要功能模块
主要功能模块:
对话,支持文字输入,文件上传等模式,我们本次课程主要使用当前模块;
效率,各种学习办公小工具;
智能体,通义的智能体应用市场,大家可以根据自己的需求找到很多有意思的小应用。
Part2:精读baseline——从零入门AI生图
我们可以向通义千问进行提问:
1.你是一个优秀的python开发工程师,现在我们需要你帮我们分析这个代码的主体框架,你需要把代码按照工作流分成几部分,用中文回答我的问题。
2.将整理好的代码发给通义千问
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio
from modelscope.msdatasets import MsDataset
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm
os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")
data_juicer_config = """
# global parameters
project_name: 'data-process'
dataset_path: './data/data-juicer/input/metadata.jsonl' # path to your dataset directory or file
np: 4 # number of subprocess to process your dataset
text_keys: 'text'
image_key: 'image'
image_special_token: '<__dj__image>'
export_path: './data/data-juicer/output/result.jsonl'
# process schedule
# a list of several process operators with their arguments
process:
- image_shape_filter:
min_width: 1024
min_height: 1024
any_or_all: any
- image_aspect_ratio_filter:
min_ratio: 0.5
max_ratio: 2.0
any_or_all: any
"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
!dj-process --config data/data-juicer/data_juicer_config.yaml
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm
texts, file_names = [], []
os.makedirs("./data/data-juicer/output/images", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as f:
for line in tqdm(f):
metadata = json.loads(line)
texts.append(metadata["text"])
file_names.append(metadata["image"][0])
df = pd.DataFrame({"text": texts, "file_name": file_names})
df.to_csv("./data/data-juicer/output/result.csv", index=False)
df
from transformers import CLIPProcessor, CLIPModel
import torch
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
images = [Image.open(img_path) for img_path in df["file_name"]]
inputs = processor(text=df["text"].tolist(), images=images, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # this is the image-text similarity score
probs = logits_per_image.softmax(dim=1) # we can take the softmax to get the probabilities
probs
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
def __init__(self, df, processor):
self.texts = df["text"].tolist()
self.images = [Image.open(img_path) for img_path in df["file_name"]]
self.processor = processor
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
inputs = self.processor(text=self.texts[idx], images=self.images[idx], return_tensors="pt", padding=True)
return inputs
dataset = CustomDataset(df, processor)
dataloader = DataLoader(dataset, batch_size=8)
for batch in dataloader:
outputs = model(**batch)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(probs)
import torch
from diffusers import StableDiffusionPipeline
torch.manual_seed(1)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v-1-4", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
prompt = "二次元,一个紫色长发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌,手持话筒"
negative_prompt = "丑陋、变形、嘈杂、模糊、低对比度"
guidance_scale = 4
num_inference_steps = 50
image = pipe(
prompt=prompt,
negative_prompt=negative_prompt,
guidance_scale=guidance_scale,
num_inference_steps=num_inference_steps,
height=1024,
width=1024,
).images[0]
image.save("example_image.png")
image
from PIL import Image
torch.manual_seed(1)
image = pipe(
prompt="二次元,日系动漫,演唱会的观众席,人山人海,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,舞台上衣着华丽的歌星们在唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("1.jpg")
torch.manual_seed(1)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,露出憧憬的神情",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,色情擦边",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("2.jpg")
torch.manual_seed(2)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙坐在演唱会的观众席,露出憧憬的神情",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,色情擦边",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("3.jpg")
torch.manual_seed(5)
image = pipe(
prompt="二次元,一个紫色短发小女孩穿着粉色吊带漏肩连衣裙,对着流星许愿,闭着眼睛,十指交叉,侧面",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度,扭曲的手指,多余的手指",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("4.jpg")
torch.manual_seed(0)
image = pipe(
prompt="二次元,一个紫色中等长度头发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("5.jpg")
torch.manual_seed(1)
image = pipe(
prompt="二次元,一个紫色长发小女孩穿着粉色吊带漏肩连衣裙,在练习室练习唱歌,手持话筒",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("6.jpg")
torch.manual_seed(7)
image = pipe(
prompt="二次元,紫色长发少女,穿着黑色连衣裙,试衣间,心情忐忑",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("7.jpg")
torch.manual_seed(0)
image = pipe(
prompt="二次元,紫色长发少女,穿着黑色礼服,连衣裙,在台上唱歌",
negative_prompt="丑陋、变形、嘈杂、模糊、低对比度",
cfg_scale=4,
num_inference_steps=50, height=1024, width=1024,
)
image.save("8.jpg")
import numpy as np
from PIL import Image
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
np.concatenate(images[0:2], axis=1),
np.concatenate(images[2:4], axis=1),
np.concatenate(images[4:6], axis=1),
np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))
image
然后通义千问会给出大致的代码解读
这段代码可以分为以下几个主要部分来进行分析:
第一部分:环境准备
这部分代码负责安装所需的库,并卸载不需要的库。
!pip install simple-aesthetics-predictor
!pip install -v -e data-juicer
!pip uninstall pytorch-lightning -y
!pip install peft lightning pandas torchvision
!pip install -e DiffSynth-Studio
第二部分:加载数据集
这部分代码从 ModelScope 加载了一个名为 `lowres_anime` 的数据集,并将其缓存在指定的目录中。
from modelscope.msdatasets import MsDataset
ds = MsDataset.load(
'AI-ModelScope/lowres_anime',
subset_name='default',
split='train',
cache_dir="/mnt/workspace/kolors/data"
)
第三部分:数据预处理
这部分代码创建了用于训练的数据集文件夹,并将数据集中的图像保存为 `.jpg` 文件,同时创建了一个包含图像路径和描述文本的 JSONL 文件。
import json, os
from data_juicer.utils.mm_utils import SpecialTokens
from tqdm import tqdm
os.makedirs("./data/lora_dataset/train", exist_ok=True)
os.makedirs("./data/data-juicer/input", exist_ok=True)
with open("./data/data-juicer/input/metadata.jsonl", "w") as f:
for data_id, data in enumerate(tqdm(ds)):
image = data["image"].convert("RGB")
image.save(f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg")
metadata = {"text": "二次元", "image": [f"/mnt/workspace/kolors/data/lora_dataset/train/{data_id}.jpg"]}
f.write(json.dumps(metadata))
f.write("\n")
第四部分:配置 DataJuicer 进行数据过滤
这部分定义了 DataJuicer 配置文件,用于过滤不符合要求的图像数据。
data_juicer_config = """
# 全局参数
...
"""
with open("data/data-juicer/data_juicer_config.yaml", "w") as file:
file.write(data_juicer_config.strip())
```
接着运行 DataJuicer 过滤数据。
```python
!dj-process --config data/data-juicer/data_juicer_config.yaml
第五部分:处理过滤后的数据
这部分将过滤后的数据集读取到 Pandas DataFrame 中,并将其保存为 CSV 文件。
import pandas as pd
import os, json
from PIL import Image
from tqdm import tqdm
texts, file_names = [], []
os.makedirs("./data/data-juicer/output/images", exist_ok=True)
with open("./data/data-juicer/output/result.jsonl", "r") as f:
for line in tqdm(f):
metadata = json.loads(line)
texts.append(metadata["text"])
file_names.append(metadata["image"][0])
df = pd.DataFrame({"text": texts, "file_name": file_names})
df.to_csv("./data/data-juicer/output/result.csv", index=False)
第六部分:使用 CLIP 模型进行文本-图像匹配
这部分代码使用 CLIP 模型对文本和图像进行编码,并计算相似度分数。
from transformers import CLIPProcessor, CLIPModel
import torch
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
images = [Image.open(img_path) for img_path in df["file_name"]]
inputs = processor(text=df["text"].tolist(), images=images, return_tensors="pt", padding=True)
outputs = model(**inputs)
logits_per_image = outputs.logits_per_image # 图像-文本相似度得分
probs = logits_per_image.softmax(dim=1) # 可以取softmax得到概率
第七部分:创建 PyTorch 数据集
这部分定义了一个自定义的 PyTorch 数据集类,并使用该类创建数据集。
from torch.utils.data import Dataset, DataLoader
class CustomDataset(Dataset):
...
dataset = CustomDataset(df, processor)
dataloader = DataLoader(dataset, batch_size=8)
for batch in dataloader:
outputs = model(**batch)
logits_per_image = outputs.logits_per_image
probs = logits_per_image.softmax(dim=1)
print(probs)
第八部分:生成图像
这部分使用 `StableDiffusionPipeline` 生成基于文本提示的图像,并保存这些图像。
import torch
from diffusers import StableDiffusionPipeline
torch.manual_seed(1)
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v-1-4", torch_dtype=torch.float16)
pipe = pipe.to("cuda")
# 使用不同的提示生成图像
...
第九部分:合并图像
这部分将生成的多个图像合并成一个大的图像,并调整大小。
import numpy as np
from PIL import Image
images = [np.array(Image.open(f"{i}.jpg")) for i in range(1, 9)]
image = np.concatenate([
np.concatenate(images[0:2], axis=1),
np.concatenate(images[2:4], axis=1),
np.concatenate(images[4:6], axis=1),
np.concatenate(images[6:8], axis=1),
], axis=0)
image = Image.fromarray(image).resize((1024, 2048))
整个流程涵盖了从数据集加载、数据预处理、模型应用到图像生成等多个环节。
还可以对不懂的代码提出来进行提问
Part4:更多的选择一一浅尝scepter webui
1.浅尝功能
魔搭体验网址:https://www.modelscope.cn/studios/iic/scepter_studio
2.官方定义
?SCEPTER is an open-source code repository dedicated to generative training, fine-tuning, and inference, encompassing a suite of downstream tasks such as image generation, transfer, editing. SCEPTER integrates popular community-driven implementations as well as proprietary methods by Tongyi Lab of Alibaba Group, offering a comprehensive toolkit for researchers and practitioners in the field of AIGC. This versatile library is designed to facilitate innovation and accelerate development in the rapidly evolving domain of generative models.
3.核心组件
生成训练和推理框架
轻松实施流行方法
交互式用户界面:SCEPTER Studio
4.私有部署(挑战型)
魔搭社区提供的体验地址里面缺失了微调模型的功能,如果大家希望能使用secpter完整的功能,我们可以将其私有部署到我们自己的服务器。
github地址:https://github.com/modelscope/scepter
总结