在最新的一篇研究中,牛津大学互联网研究所的人工智能研究员发出了对大语言模型(LLMs)对科学真相构成威胁的警告。由Brent Mittelstadt、Chris Russell和Sandra Wachter等研究员在《自然人类行为》期刊上发表的论文中,他们指出,基于GPT-3.5架构等LLMs并非绝对的真实信息来源,可能产生他们所称的“幻觉”——即不真实的回应。
图源备注:图片由AI生成,图片授权服务商Midjourney
一年前,科技巨头Meta发布了一款名为“Galactica”的大型语言模型,旨在协助科学家。然而,与Meta期望相反,“Galactica”在经历了三天的激烈批评后黯然失色。一年后,在科学研究领域对LLMs的依赖仍然未有显著改变。
研究呼吁改变LLMs的使用方式,建议将其作为“零射击翻译器”。与其依赖LLMs作为知识库,用户应提供相关信息并指导模型将其转化为期望的输出。这种方法有助于更容易验证输出的事实准确性和与提供的输入一致性。
论文中指出的核心问题在于这些模型训练所使用的数据的性质。设计用于提供有用且具有说服力回应的语言模型,缺乏对其准确性或与事实一致性的保证。在从在线内容获取的大规模数据集上进行训练,其中可能包含虚假陈述、观点和创造性写作,使LLMs接触到非事实信息。
Mittelstadt教授强调了用户信任LLMs作为可靠信息来源的风险,类似于人类专家。由于它们被设计成听起来像人类的代理,用户可能会被误导,即使回应缺乏事实依据或呈现事实的偏见版本,也会接受其准确性。
为了保护科学真相和教育免受不准确和有偏见信息的传播,研究呼吁对LLMs的负责任使用设定明确期望。论文建议用户,特别是在准确性至关重要的任务中,应提供包含事实信息的翻译提示。
Wachter教授强调了在科学界负责任使用LLMs的作用以及对事实信息的信心的重要性。研究呼吁警惕如果LLMs在生成和传播科学文章中被随意使用可能导致的严重危害。
Russell教授强调了对LLMs提供的机会进行谨慎考虑,并促使反思这项技术是否应该因为它能够提供某些机会而被授予这些机会。