-
【AIGC】训练数据入库(Milvus)
之前的文章有写如何获取数据、如何补充数据,也有说如何对数据进行清洗、如何使用结构化数据进行训练。但好像没有说如何将训练数据“入库”。这里说的入库不是指 MySQL 数据库,而是指向量检索库 Milvus。 众所周知,人工智能多用向量数据进行训练。数据先做...
-
Whisper-TikTok 使用指南
Whisper-TikTok 使用指南 Whisper-TikTokFrom AI tools to TikTok video creation using FFMPEG, Microsoft Edge read aloud and OpenAI Wh...
-
Datawhale X 魔搭 AI夏令营 第四期--AIGC文生图 task2笔记
先上图看连环画成果 一直有个篮球总冠军,根据通义千问的文生图对话式生成8个连贯的文生图故事。通过生成的故事内容生成了下面的图片 男主正在练习打篮球 动漫风,连环画,一个黑色高个子帅气男生,穿着红色篮球服,正在篮球训练场上,练习投篮,专注地重复...
-
Python爬虫是什么?核心概念和原理
前些天发现了一个巨牛的人工智能学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站:人工智能教程 一、爬虫的概念和作用 1.1 概念: 网络爬虫也叫网络蜘蛛,特指一类自动批量下载网络资源的程序,这是一个比较口语化的定义...
-
鹅厂也下场,文档解析的痛点是什么?
最近,文档解析赛道颇为火热,产品更新迭代频繁,与各类大模型上下游一样发展势头很劲。6月下旬,鹅厂也在多个产品上线了文档解析功能。 文档智能交互是企业、学术、个人工作中必不可少的一环,作为大模型应用的典型场景之一,它对准确、高效的文档解析工具有着长期需求。...
-
Datawhale X 魔搭 AI夏令营 - AIGC文生图方向Task2笔记
今天做的是AIGC文生图方向的 task 2 ,回顾一下 task 2 step 0 : Task 2 学习规划 step 1 : 认识通义千问 (使用通义千问大语言模型学习如何借助AI智能助手帮我们阅读代码) 链接:点击直达 1...
-
Datawhale X 魔搭 AI夏令营 Task1
Datawhale X 魔搭 AI夏令营 Task1 赛事解读 AI文生图相关概念 可图模型及微调简介 魔搭零代码生图、微调工具介绍 魔搭AI生图相关应用介绍 DataWhale开源组织网站主页:Datawhale DataWhaleAI夏令营第...
-
Datawhale X 魔搭 AI夏令营-AIGC Task 02 精读代码,实战进阶 --笔记
前言 Task 01 通过预训练模型的调用,在baseline上跑通模型,实现内容→图片。即,根据prompt中输入的文本描述,模型生成对应的图片。Task 02 深入学习。 目录 一、AI生图技术 1.1 基础点 1.2 技术难点 1.3...
-
Datawhale X 魔搭 AI夏令营-AIGC文生图方向Task2笔记
学习链接:https://datawhaler.feishu.cn/wiki/UM7awcAuQicI4ukd2qtccT51nug 因为不会专业性的术语所以在此依然是简单记录自己的运行和打卡。 1.文生图理论学习 Deepfake技术 Deepf...
-
LLaMA Factory微调Llama3模型
LLaMA Factory是一款开源低代码大模型微调框架,集成了业界最广泛使用的微调技术,支持通过Web UI界面零代码微调大模型,目前已经成为开源社区内最受欢迎的微调框架。 ?GPU推荐使用24GB显存的A10(ecs.gn7i-c8g1.2xlar...
-
Datawhale X 魔搭 AI夏令营第四期 | AIGC文生图——进阶上分 实战优化 Task3笔记
Hi,大家好,我是半亩花海。在上一个任务中,我们逐行精读baseline,掌握了利用AI工具提升学习效率,并制作了话剧连环画,初步了解Secpter WebUI。今天,我们将深入探讨微调的基本原理及其参数,旨在优化效果。同时,介绍文生图工作流平台Comfy...
-
Datawhale AI夏令营第四期 AIGC方向 task02学习笔记
探探前沿:了解一下 AI生图技术 的能力&局限 今天我们的任务是对baseline的代码有一个更加细致的理解,然后我们会学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。授人以鱼不如授人以渔,你可以...
-
Stable Diffusion 的 `/sdapi/v1/img2img` 接口参数定义
{ "prompt": "", "negative_prompt": "", "styles": [ "string" ], "seed": -1, "subseed": -1, "subseed_strengt...
-
Datawhale X 魔搭 AI夏令营-AIGC文生图方向 Task02
1.AI生图的能力&局限: 如果我说这是一张AI生成的图片,你能相信吗? 然而幸运又不幸的是它确实是AI生成的。 很难想象在短短几年内,AI生图的能力已经像指数爆炸一样增长。一年前,AI还因为拙劣的画“手”能力被看轻,也因为当时这个情况,...
-
#Datawhale AI夏令营第4期#AIGC方向 文生图 Task2
Task2任务:对baseline的代码有一个更加细致的理解,然后学习如何借助AI来提升我们的自学习能力. 前沿知识:了解一下 AI生图技术 的能力&局限 AI生图技术,通常指的是使用人工智能(尤其是深度学习)来生成图像的技术。这类技术可以用于...
-
Datawhale X 魔搭AI夏令营 第四期-AIGC文生图lora方向 Task2笔记
继task01跑通baseline之后,有时候回想起实例中那些自己摸不着头脑的代码片段,确实有些好奇,task2正好用借助通用大语言模型工具精读了一下这些代码片段,并进行了实战演练一一基于话剧的连环画制作。 (这里学习文档给出的大语言模型...
-
在亚马逊云科技上对Stable Diffusion模型提示词、输出图像内容进行安全审核
项目简介: 小李哥将继续每天介绍一个基于亚马逊云科技AWS云计算平台的全球前沿AI技术解决方案,帮助大家快速了解国际上最热门的云计算平台亚马逊云科技AWS AI最佳实践,并应用到自己的日常工作里。 本次介绍的是如何在亚马逊云科技机器学习托管服务Sage...
-
Datawhale AI夏令营第四期 魔搭-AIGC方向 task02 精读代码,实战进阶
今天我们的任务是对baseline的代码有一个更加细致的理解,然后我们会学习如何借助AI来提升我们的自学习能力,从而帮助大家在后面的学习工作中如何从容迎接各种挑战。授人以鱼不如授人以渔,你可以从中学大模型的提问技巧来实现快速学习,学会如何制作一个话剧连环画...
-
Datawhale AI夏令营第四期AIGC方向Task2学习笔记
Kolors(可图)模型 Kolors是由快手团队开发的大规模文本到图像生成模型(可图 · 模型库 (modelscope.cn )根据链接的文章内容,Kolors在视觉质量、复杂语义准确性以及中英文字符的文本渲染方面,显著优于开源和专有...
-
“Datawhale X 魔搭” AI夏令营第四期:AIGC方向——Task2&Task3
背景介绍 AIGC技术 AIGC(AI-Generated Content 是指基于生成对抗网络、大型预训练模型等人工智能的技术方法,通过已有数据的学习和识别,以适当的泛化能力生成相关内容的技术。例如,通过输入关键词、描述或样本...
-
ComfyUI插件:ComfyUI layer style 节点(三)
前言: 学习ComfyUI是一场持久战,而ComfyUI layer style 是一组专为图片设计制作且集成了Photoshop功能的强大节点。该节点几乎将PhotoShop的全部功能迁移到ComfyUI,诸如提供仿照Adobe Photoshop的图...
-
Datawhale X 魔搭 AI夏令营 AIGC Task2笔记
对于task2里的这几句话本人还是十分赞成的 定期关注AI生图的最新能力情况都十分重要: 对于普通人来说,可以避免被常见的AI生图场景欺骗,偶尔也可以通过相关工具绘图 对于创作者来说,通过AI生图的工具可以提效,快速制作自己所需要的内容 对...
-
【课程总结】day24(上):大模型三阶段训练方法(LLaMa Factory)
前言 本章我们将通过 LLaMA-Factory 具体实践大模型训练的三个阶段,包括:预训练、监督微调和偏好纠正。 大模型训练回顾 训练目标 训练一个医疗大模型 训练过程实施 准备训练框架 LLaMA Factory是一款开源低...
-
快速体验LoRA微调Llama3-8B模型以及海光DCU推理加速(曙光超算互联网平台国产异构加速卡)
序言 本文以 LLaMA-Factory 为例,在超算互联网平台SCNet上使用异构加速卡AI 显存64GB PCIE,对 Llama3-8B-Instruct 模型进行 LoRA 微调、合并和推理。 一、参考资料 github仓库代码:LLaM...
-
Datawhale AI夏令营第四期 魔搭-AIGC方向 Task2:精读代码,实战进阶 笔记
在夏令营第四期Task1时,我们已经跑通了baseline,本期目的是对baseline的代码有一个更加细致的理解,学习如何借助AI来提升我们的自学习能力,理解每行代码的意思,从大模型提问技巧来实现自主学习,并学习如何制作一个连环画。 首先认识大语言模型...
-
Datawhale X 魔搭 AI夏令营 - AIGC方向(task01笔记)
提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 前言 一、基础知识 二、实现步骤 1.克隆存储库: 2. 安装环境,然后重启kernel 3. 调整prompt 总结 前言 赛题介绍...
-
Stable Diffusion | Gradio界面设计及webUI API调用
本文基于webUI API编写了类似于webUI的Gradio交互式界面,支持文生图/图生图(SD1.x,SD2.x,SDXL),Embedding,Lora,X/Y/Z Plot,ADetailer、ControlNet,超分放大(Extras),图片信...
-
Datawhale X 魔搭 AI夏令营第四期 魔搭-AIGC方向 Task2:精读代码,实战进阶
Datawhale X 魔搭 AI夏令营第四期 魔搭-AIGC方向 Task2:精读代码,实战进阶 Part1:磨刀准备一一认识通义千问 会用ChatGpt就行 Part2:精读baseline——从零入门AI生图 1. 代码的主体架构...
-
Datawhale X 魔搭 AI夏令营-第四期 AIGC-Task 2
目录 认识AI助手——通义千问 操作指南 主要功能模块 精读baseline代码 分析代码的主体架构 逐行解释代码 其他疑问-向AI追问 进行实战——基于话剧的连环画制作 提示词准备 执行Task1的30分钟速通Baseline 修改...
-
Datawhale X 魔搭 AI夏令营 AIGC方向 Task02
参考教程:Docshttps://datawhaler.feishu.cn/wiki/KxI2wIeAJiRQWhkRt9dcqlNVnFR?from=from_copylink 精读baseline 代码整理 使用通义千问辅助理解baseline代...
-
stable diffusion+LangChain+LLM自动生成图片
最近都在研究和学习stable diffusion和langchain的相关知识,并且看到stable diffusion也是有类似于ChatGLM的api调用方式,那在想有没有可能将stable diffusion也集成到langchain中来呢?看到网...
-
Datawhale X 魔塔 AI夏令营 AIGC方向Task1
小白学习笔记,如有错误请各位大佬指正 一、跑通baseline教程 Datawhale 教程链接Datawhale 二、baseline代码分析 1.安装库 !pip install simple-aesthetics-predictor !p...
-
Datawhale X 魔搭 AI夏令营第四期 AIGC方向 task02笔记
AI工具使用 1. baseline 代码 2. 使用通义千问理解代码 2.1 工作流程 2.2 逐行释意 3. 使用通义千问生成 Prompt 3.1 生成的 Prompt 3.1 根据 Prompt 生成的图片 1. b...
-
Midjourney连夜发布v6.1版本 | Midjourney API v6.1
Midjourney官方在7月31号发布了v6.1版本,作为AI产品来说,MJ版本更新的节奏相对于其他主流产品慢很多,是距离上次v6.0发布已经长达7个月之久的版本迭代。本次迭代的内容相信是对整体“AI文生图”产品来说又是一个质的提升。 首先我们来看官方...
-
【愚公系列】《AIGC辅助软件开发》017-AI辅助后端编程:用ChatGPT写简单的生鲜小超市项目
? 作者简介,愚公搬代码 ?《头衔》:华为云特约编辑,华为云云享专家,华为开发者专家,华为产品云测专家,CSDN博客专家,CSDN商业化专家,阿里云专家博主,阿里云签约作者,腾讯云优秀博主,腾讯云内容共创官,掘金优秀博主,亚马逊技领云博主,51CTO博客专...
-
vllm 聊天模板
vllm 聊天模板 背景 如何使用chat template generation prompt & add_generation_prompt chat templates的额外输入 工具使用 / 函数调用 Chat Template...
-
Datawhale Al夏令营 AIGC方向 task2
1、代码解读 1.1、安装 Data-Juicer 和 DiffSynth-Studio # 安装 Data-Juicer 和 DiffSynth-Studio !pip install simple-aesthetics-predictor # 安...
-
Datawhale 魔搭 AI夏令营 第四期 AIGC方向 Tesk2 可图Kolors-LoRA模型进阶学习
AI生图的能力与局限 AI生图的原理 AI利用 深度学习技术来训练神经网络,训练过程中,神经网络会学习到真实图像中的纹理、结构、颜色等特征,并将这些特征应用于生成新的图像。从而生成具有高保真度的图像。训练后,通过输入关键提示词来让模型...
-
使用llama factory对语言模型微调,重塑自我认知,并部署于ollama上
本文记录了从环境部署到微调模型、效果测试并部署的全过程。 一 环境 如果使用autodl租赁服务器则不需要如下步骤,但是请注意llama_factory需要python、cuda等版本满足: 首先请确报你已经安装好了conda工具...
-
Python虚拟环境:使用venv隔离项目依赖
前言 在开发Python项目时,管理项目的依赖关系是一个常见的挑战。不同项目可能需要不同版本的库,如果不加以管理,很容易导致依赖冲突和环境混乱。幸运的是,Python提供了虚拟环境(virtual environment)的解决方案,帮助我们隔离项目依...
-
Datawhale AI夏令营第四期魔搭- AIGC方向 task02笔记
大纲 一、前言 二、代码块解读 2.1 依赖包安装 2.2 数据集下载 2.3 metadata.jsonl文件生成(图片及对应标签) 2.4 设置data-juicer 配置文件并执行,处理metadata.jsonl文件生成result....
-
小白教程:Unsloth 打造属于自己的中文版Llama3
在定制化业务场景中,如果利用专属数据集,经过微调的大模型能够在多种任务上与GPT-4媲美,并支持本地部署,保护隐私,同时还能降低运算成本。最新推出的Llama3,作为当前性能最强的开源基础大模型,非常适用于自然语言处理、机器翻译、文本生成、问答系统、聊天机...
-
使用diffusers来训练自己的Stable Diffusion 3大模型
基于diffusers的Stable diffusion训练代码 这里给大家介绍一个基于diffusers库来训练stable diffusion相关模型的训练代码,包含Lora、ControlNet、IP-adapter、Animatediff,以及...
-
Datawhale X 魔搭 AI夏令营---AIGC Task2
目录 Datawhale X 魔搭 AI夏令营第四期-AIGC文生图方向 Task2:精读代码,实战进阶 0.0 一些link 0.1 任务内容 0.2 AI生图 0.3 **Kolors(可图)模型** 1.1 精读baseline——从...
-
【已解决】报错“copying a param with shape torch.Size([1280, 1280]) from checkpoint”
在使用SDXL时,报错“copying a param with shape torch.Size([1280, 1280] from checkpoint, the shape in current model is torch.Size([1280,...
-
网络爬虫必备工具:代理IP科普指南
文章目录 1. 网络爬虫简介 1.1 什么是网络爬虫? 1.2 网络爬虫的应用领域 1.3 网络爬虫面临的主要挑战 2. 代理IP:爬虫的得力助手 2.1 代理IP的定义和工作原理 2.2 爬虫使用代理IP的必要性 3. 代理IP的类型...
-
Datawhale X 魔搭 AI夏令营 AIGC方向 task2笔记
纯小白,自学!从零入门AI生图(AIGC方向)基于魔搭社区“可图Kolors-LoRA风格故事挑战赛”开展实践学习。#Datawhale X 魔搭 AI夏令营# 一、利用AI精读baseline学习代码 task2的目的是精读bas...
-
Datawhale X 魔搭 AI夏令营第四期 魔搭-AIGC方向 task02笔记
一、探探前沿:了解一下 AI生图技术 的能力&局限 1. 为什么要了解AI生图前沿? AIGC(AI-Generated Content 是通过人工智能技术自动生成内容的生产方式,很早就有专家指出,AIGC将是未来人工智能的重点方向,也将改造相...
-
Datawhale X 魔搭 AI夏令营第四期 AIGC方向 学习笔记(一)
本期主要任务是了解AI文生图的原理并进行相关实践 下面是对baseline部分代码的功能介绍: 安装Data-juicere和DiffSynth-Studio !pip install simple-aesthetics-predictor !pip...
-
Datawhale AI夏令营第四期 魔搭-AIGC方向 task02笔记
1:精读baseline 这里我使用了ChatGPT 4o对吧baseline文件代码进行了解析(不知道为啥我的通义千问无法使用 。 GPT代码解析结果如下: 1. 环境设置与依赖安装 !pip install simple-aest...